

P.1.1

GModBus Over Serial Line

USER GUIDE

P.1

Table of contents

1. Foreword ... 3

2. Configuration .. 4

2.1 Software configuration .. 4

2.2 Hardware: Network connection ... 4

3. GModBus over Serial Line .. 6

3.1 GModBus over Serial Line within LabVIEW ... 6

4. GModBus over Serial Line components .. 7

4.1 Opening/Closing ModBus communication .. 7

4.1.1 Open ... 7

4.1.2 Close .. 8

4.2 Master tools ... 8

4.2.1 Foreword and writing conventions ... 9

4.2.2 Request 1: Reading N output bits .. 9

4.2.3 Request 2: Reading N input bits... 10

4.2.4 Request 3: Reading N output words .. 10

4.2.5 Request 4: Reading N input words .. 10

4.2.6 Request 5: writing an output bit ... 11

4.2.7 Request 6: writing an output word ... 11

4.2.8 Request 15: Writing N output bits .. 11

4.2.9 Request 16: Writing N output words .. 12

4.2.10 Request 7: Status reading .. 12

4.2.11 Request 8: Diagnosis .. 12

4.2.12 EZ Coding Vis ... 13

4.3 Slave Tools ... 14

4.3.1 .. 14

4.3.2 Request management .. 15

4.3.2.a Answer request 1 and 2 (reading N input or output bits) 15

4.3.2.b Answer request 3 and 4 (reading N input or output words) 16

4.3.2.c Answer request 5 (writing an output bit) .. 16

4.3.2.d Answer request 6 (writing an output word) ... 16

4.3.2.e Answer request 15 (writing N output bits) ... 16

4.3.2.f Answer request 16 (writing N output words) ... 17

4.3.2.g Return an exception code ... 17

P.2

5. Tools ... 18

5.1.1 Master .. 19

5.1.2 Slave ... 21

6. GModBus over Serial Line .. 23

7. GModBus support ... 24

8. Specific errors to GModBus .. 25

8.1 Specific errors to GmodBus driver... 25

8.2 Exception codes of ModBus protocol ... 25

9. Problems resolution ... 26

P.3

1. Foreword
GModBus over Serial Line protocol is a communication protocol based on a master

slave architecture. The network will connect one master to one or several slaves with a

RS 485 link.

Through this protocol, only the master can prompt the exchange with the slave by

sending a request and waiting for an answer. Therefore only one device can emit

through the serial link. No slave can send a message without being asked first. The

validity of the communication is controlled by checksum or timeout functions.

GModBus over Serial Line driver encapsulates all these layers in order to make it

easy for the developer to insert a computer, as master or slave, within such a bus.

The following functionalities, hidden to the user, are managed:

- Link and Network low layers of ModBus procedure

- Encoding/decoding ASCII or RTU frames

- Frames control through checksum and timeout

- Serial link(s) communication management

P.4

2. Configuration

2.1 Software configuration

GModBus over Serial Line driver runs under the following LabVIEW:

- 2010 and later

And on the following platforms:

- PC under Windows XP and later

- RT system (Real Time)

2.2 Hardware: Network connection

There are 2 ways to connect a computer to a ModBus network:

Point to point link:

The « Point to point » set up enables a platform (set as the master) to connect to a

single equipment through the same ModBus network. A classic serial link is used in

most cases but a RS 485 link can suit too. The equipment must have a serial

communication card. Device wiring is defined in the manufacturer

documentation.

On the computer side, refer to the following outlines:

Figure 1 : Serial connector SUB D9 for PC

 Contact us for further information concerning former LabVIEW versions.

P
C

R
S

 2
3
2

1 Not used

2 Rx

3 Tx

4 Not used

5 GND

6 Not used

7 Not used

8 Not used

9 Not used

Master

Slave

P.5

Note: To Connect 2 computers (one master to a slave) through a serial RS 232, use a

crossed serial cable.

Multipoint link:

A multipoint link is the connexion of several equipments on the same physical link.

The RS 485 standard has to be used. To that end a RS 232/422 RS 485 adapter or a

specific card will be required. In both cases, refer to the manufacturer documentation

to determine the wiring.

The usual connexion will be:

- The master Rx line must be connected to the slave Tx line.

- The master Tx line must be connected to the slave Rx line.

 Apple© does not include mini DIN 8 connector on G3,4 an 5 and iMac.Use USB/Serial

(subD9) to connect a ModBus network.

M
ac

in
to

sh

R
S

 2
3
2

1 DTR

2 DSR

3 Tx

4 GND

5 Rx

6 Not used

7 Not used

8 Not used

M
ac

in
to

sh

R
S

 4
2
2

1 Not used

2 Not used

3 Tx-

4 GND

5 Rx-

6 Tx+

7 Not used

8 Rx+

Figure 2: Mini serial connector DIN 8 for Macintosh

Master

Slave 1

Slave 2

Slave n

P.6

3. GModBus over Serial Line
The driver has been designed to follow different stages:

- Open : initialization of the communication

- Read / Write : read and write tasks

- Close : stops the communication

3.1 GModBus over Serial Line within LabVIEW

GModBus over Serial Line driver installation adds the GModBus over Serial Line palette

to LabVIEW functions palette.

Figure 3: GModBus over Serial Line within LabVIEW palette

P.7

4. GModBus over Serial Line components

4.1 Opening/Closing ModBus communication

This chapter deals with the opening and closing of a ModBus connection. The VIs to

use are found in the LabVIEW Functions palette by selecting Data Communication >

GModBus over Serial Line.

Figure 4: Communication opening and communication closing VIs palette

In Master mode like in Slave mode, it is imperative for the ModBus communication

to be opened before any request transmission. At the end of the communication, the

closing step results in releasing the resources properly.

4.1.1 Open

Figure 5: MBV_open.vi

This VI initializes the serial communication of the ModBus network described by

Network in. It sends back a NetRef out, single reference to Network in, which is

required by the other VIs of ModBus driver managing the same communication.

Network in:

- Com Port: serial port used to communicate.

- BaudRate: speed of data flow.

- Parity: kind of parity calculus which will help to check the validity of the

communication (none, odd, even).

- StopBit: number of bits associated with the stop of the serial link (1 bit, 1,5 bit

or 2 bits).

- Master: mode of the opened connection (true = master, false = slave)

- RTU: transmission mode of ModBus frames (true = RTU, false = ASCII).

- TimeOut (ms): time to deal with the writing and the reading of the requests.

- LocalSlaveAddress: associate an address to the slave. This field is useful only

during a slave development (cf. §Erreur ! Source du renvoi introuvable.).

P.8

- Character time: inter-character waiting time in RTU mode.

- Flow control parameters:
- Flow control (0:none): control type (none, XON/XOFF, RTS/CTS,

DTR/DSR).

- XOFF byte: value of the XOFF character

- XON byte: value of the XON character

- parity error byte: parity used with every frame that is transmitted or

received.

- Valid values include: (0) Parity None, (1) Parity Odd,(2) Parity Even, (3)

Parity Mark, (4) Parity Space.

Mark means that the parity exists and is always 1.

Space means that the parity exists and is always 0.

4.1.2 Close

Closes the Network serial communication associated with NetRef in.

It is imperative for the release process to be done properly to free the memory

resources of the computer.

4.2 Master tools

This chapter describes the VIs used to realise the master of a ModBus network.

These VIs are found in the Functions palette by selecting Data Communication >

GModBus over Serial Line > Master_Tools.

Figure 6: Master_Tools palette

P.9

4.2.1 Foreword and writing conventions

The set of VIs that composes the Master part of GModBus driver follows the

connector model below:

Figure 7: Master VIs connector model

- NetRef in / NetRef out: NetRef in is the reference to the ModBus network

obtained at the opening of the communication (see § Erreur ! Source du

renvoi introuvable.). NetRef out is a copy of NetRef in.

- error in / error out: error in describes the errors that occurred before the VI.

The default value corresponds to "no error". If an error occurred before you

call the VI, this error goes to error out without the VI executing its function. If

an error occurs when the function is running, this error goes automatically to

error out.
- Slave address (1) address of the equipment pointed by the ModBus request.

Its default value is 1.

- Information out is a cluster that contains following data :

- transmitterAddress: same as Slave address (1).
- exceptionCode: Code referring to ModBus protocol exceptions (cf. § Erreur !

ource du renvoi introuvable.). 0 by default, no exception occurred.

- functionCode: Number of the request used.

- sendFrame: Characters sent to slave equipment (This data is given for

information, GModBus over Serial Line driver deals with the sending of the

frame by itself).

- receivedFrame: string received by the master (sent by the slave as an answer

on the request).
- The connectors respect LabVIEW conventions as follows:

- The label connectorname (x) means x is the default value associated with this

connector if no other value is given to it in Input.

- The connectors which names appear in bold must be wired. Otherwise the

caller VI will not be able to run (broken arrow).

4.2.2 Request 1: Reading N output bits

Figure 8: MBV_lecNBitsSortie(1).vi

P.10

This VI is used to read consecutive output Bits defined in the memory of the

destination equipment

- Bit address: address of the first bit

- Quantity of bits (1): number of bits to read

- Bits: value of the read bits

4.2.3 Request 2: Reading N input bits

Figure 9: MBV_lecNBitsEntree(2).vi

This VI is used to read consecutive input Bits defined in the memory of the

destination equipment

- Bit address: address of the first bit
- Quantity of bits (1): number of bits to read
- Bits: value of the read bits

4.2.4 Request 3: Reading N output words

Figure 10: MBV_lecNMotsSortie(3).vi

This VI is used to read consecutive output Words defined in the memory of the

destination equipment

- Word address: address of the first word

- Quantity of Words (1): number of words to read
- Words value of the read words

4.2.5 Request 4: Reading N input words

Figure 11: MBV_lecNMotsEntree(4).vi

This VI is used to read consecutive input Words defined in the memory of the

destination equipment

- Word address: address of the first word

- Quantity of Words (1): number of words to read

P.11

- Words value of the read words

4.2.6 Request 5: writing an output bit

Figure 12: MBV_ecrBitSortie(5).vi

This VI is used to write (at 0 or at 1) an output Bit in the memory of the destination

equipment

- Bit address: address of the bit to write
- Bit (F): value of the bit to write

4.2.7 Request 6: writing an output word

Figure 13: MBV_ecrMotSortie(6).vi

This VI is used to write an output Word in the memory of the destination equipment

- Word address: address of the word to write

- Word (0): value of the word to write

4.2.8 Request 15: Writing N output bits

Figure 14: MBV_ecrNBitsSortie(15).vi

This VI permits to write (at 0 or at 1) a group of consecutive output bits in the

memory of the destination equipment.

- Bit address: address of the first bit to write.
- Bits: array of bits to write

The driver sends groups of 8 bits. If the number of bits written is not a multiple of

8, the driver fills the missing bits at FALSE. Depending on the equipment of

destination, these bits can be interpreted or not.

P.12

4.2.9 Request 16: Writing N output words

Figure 15: MBV_ecrNmotsSortie(16).vi

This VI is used to write a group of consecutive output words (16 bits) in the memory

of the destination equipment.

- Word address: address of the first word to write.

- Words: array of words to write.

4.2.10 Request 7: Status reading

Figure 16: MBV_lecStatusException(7).vi

This VI permits to reach the 8 bits of the equipment status

- Status: array of bits representing the slave state.

The meaning of the status bits is specific to the equipment used. For more

information refer to the manufacturer documentation.

4.2.11 Request 8: Diagnosis

Figure 17: MBV_diagnostic(8).vi

This VI is used to run Master/Slave communication tests or to check the slave is

functional.

- Subfunction Code: type of test to run.
- Data: data associated with the test if necessary.
- Data: test result if necessary.

Diagnosis functions are specific to the equipment used. For more information

P.13

4.2.12 EZ Coding Vis

EZ Coding VIs are to be dropped on an existing VI. They propose a starting

architecture to the implementation of a ModBus master.

Figure 18: EZ Coding functions palette

Drop this VI into the block diagram to place his content and customized it.

Figure 19: How to implements a simple request to a ModBus Slave

Figure 20: How to interpret 2 words to obtain a single.

P.14

Figure 21: How to interpret a single to obtain 2 words

4.3 Slave Tools

This chapter describes the Vis to use to realise a slave for a ModBus network. These

Vis are found in the Functions palette by selecting Data Communication > GModBus

over Serial Line > Slave_Tools.

Figure 22: Slaves Vis palette

4.3.1

In Slave mode, the computer never initiates the communication. It scans the network

to get back the requests that are sent to it. These tasks are done with the VI

MBV_listenRequest.vi.

Figure 23: MBV_listenRequest.vi

This VI scans ModBus network and returns information about the requests sent by the

master.

P.15

- TimeOut ?: returns TRUE if the computer did not receive any request, returns

FALSE otherwise.

- FunctionCode: number of the received request.
- Data: data contained in the request.
- Information out:
- receivedFrame: Characters received by the slave (and sent by the master).

- exceptionCode: Code refering to ModBus protocol exceptions (cf. § Erreur !

ource du renvoi introuvable.). By default 0, no exception occured.

- CRC / LRC error: returns TRUE if an error occured during the frame

reception.

4.3.2 Request management

The set of VIs that composes the Slave part of GModBus over Serial Line driver

follows the connector model below:

Figure 24: Slave VIs connector model

- NetRef in / NetRef out : NetRef in is the reference to the ModBus network

that you get when you open the communication (cf. § Erreur ! Source du

envoi introuvable.). NetRef out is a copy of NetRef in.

- error in / error out : error in describes the errors that occurred before the

VI. The default value corresponds to "no error". If an error occurred before

this VI is called, this error goes to error out without the VI executing its

function. If an error occurs while the function is running, it automatically goes

to error out.
- Data describes data received by the slave (cf. § Erreur ! Source du renvoi

ntrouvable.).

- Send frame describes the frame sent by the slave to the master (This data is

given for information, GModBus over Serial Line driver deals with the sending

of the frame by itself).

4.3.2.a Answer request 1 and 2 (reading N input or output bits)

Figure 25: MBV_repLectureNBits(1_2).vi

This VI permits to answer requests 1 or 2 sent by the master through ModBus

network.

- Function (1/2): request to deal with.
- Bits: array containing the values of the slave registers group.

P.16

4.3.2.b Answer request 3 and 4 (reading N input or output words)

Figure 26: MBV_repLectureNMots(3_4).vi

This VI permits to answer requests 3 or 4 sent by the master through ModBus

network.

- Function (3/4): request to deal with.
- Words: array containing the values of the slave registers group.

4.3.2.c Answer request 5 (writing an output bit)

Figure 27: MBV_repEcritureBit(5).vi

This VI permits to answer request 5 sent by the master through ModBus network.

- Bits in: array defining the values of the slave registers.

- Bits out: array containing the values of slave registers after the request has

been done.

4.3.2.d Answer request 6 (writing an output word)

Figure 28: MBV_repEcritureMot(6).vi

This VI permits to answer request 6 sent by the master through ModBus network.

- Words in: array defining the values of the slave registers group.
- Words out: values of slave register when the request has been done.

4.3.2.e Answer request 15 (writing N output bits)

Figure 29: MBV_repEcritureNBits(15).vi

This VI permits to answer request 15 sent by the master through ModBus network.
- Bits in: array defining the values of the slave registers.

- Bits out: values of slave register when the request has been done.

P.17

4.3.2.f Answer request 16 (writing N output words)

Figure 30: MBV_repEcritureNMots(16).vi

This VI permits to answer request 16 sent by the master through ModBus network.
- Words in: array defining the values of the slave registers group.
- Words out: values of slave register when the request has been done.

4.3.2.g Return an exception code

Figure 31: MBV_repException.vi

This VI returns an exception code to the master of ModBus network.

- Function: request that generated the exception code.
- Exception Code: exception code to send (see§ Erreur ! Source du renvoi

ntrouvable.).

P.18

5. Tools
This chapter describes tools to quickly simulate a ModBus master or slave. You will

find them in the LabVIEW menu bar.

Figure 32: Tools menu

P.19

5.1.1 Master

The master application will quickly test the communication with a slave through

ModBus network.

Figure 33: Master window

The interface falls into three sections:

Network settings

- The serial link section defines:

 Com Port: number or name of the serial port used to

communicate. the list of serial ports available on the computer is

automatically updated

 BaudRate: speed of data flow (must be coherent with the slave(s)).

P.20

 Parity: kind of parity calculus which will help to check the validity

of the communication (none, odd, even) (must be coherent with the

slave(s)).

 StopBit: number of stop bits (1 bit, 1,5 bit or 2 bits) (must be

coherent with the slave(s)).

The communication parameters permit to choose:

- The transmission mode: RTU or ASCII

- The time out (in ms): time granted to the slave to answer the request of the

master. If this period of time is over, it generates a Time Out error.

Communication test

Figure 34: Communication test interface in Master mode

All the types of Request of GModBus driver are managed:

Figure 35: Requests choice

Request parameters

Request data

Content of the sent and

received frames

P.21

The first register to read or write is defined by From address.

The field With N = is only available for requests 1, 2, 3 and 4. It represents the

number of bit(s) or word(s) to read or to write.

The data zone, located below the request parameters, permits to determine the

values to write during the use of writing requests.

When all the settings are done, click on SEND REQUEST button to start the

communication with the slave. The content of the frames sent and received by the

Master is displayed below the data zone.

The Exception code refers to ModBus protocol exceptions (see §Erreur ! Source du

renvoi introuvable.).

5.1.2 Slave

The Slave application simulates a slave of witch registers are represented with an

array of 100 bits and an array of 100 words.

A ModBus master can read or write these tables.

Figure 36: Slave window

P.22

Two sections compose this interface:

Network settings:

The serial link and communication settings are to be coherent with this parameters

in Master mode (see § Erreur ! Source du renvoi introuvable.).

The Computer slave address: Determines the slave address allocated to the

computer on ModBus network.

Communication test:

Figure 37: Communication test interface of the slave

When clicking on the RUN SLAVE button the slave waits for the master to send a

request (listening state). This change of state is notified by the computer icon

which becomes green .

The settings of ModBus network slave is listening.

The received and sent frames are displayed in hexadecimal code below the register

tables.

The instantaneously; the time out determines the maximum

time it could take.

The Exception code refers to ModBus protocol exceptions (cf. §Erreur ! Source du

envoi introuvable.).

Received and

sent frames

Table of words

Table of bits

P.23

6. GModBus over Serial Line
After the download and installation of GModBus over Serial Line toolkit, an activation

window will pop up at LabVIEW launching. You can also go to help > Activation Add-ons,

. Follow the steps of the add-ons activation.

Figure 38: Add-ons activation

will become broken. To activate the toolkit after this period, simply go to Help menu

and select Activate Add-

P.24

7. GModBus support
Resources

http://decibel.ni.com/content/groups/saphir-toolkit

Figure 39: Online support & resources

http://decibel.ni.com/content/groups/saphir-toolkit

P.25

8. Specific errors to GModBus

8.1 Specific errors to GmodBus driver

Following errors can be generate by GModBus over Serial Line functions

Error Explanation

6200 wrong CRC/LRC

6201 Timeout

6202 Unable to create reference

6203 Unable to read reference, reference may not exist

6204 Unable to delete reference, reference may not exist

Table 1 : Errors specific to GModBus driver

8.2 Exception codes of ModBus protocol

Following exception codes are specific to ModBus protocol.

Decimal Codes Explanation

1 Not implemented function

2 Out of limits address

3 Out of limits data

4 Defective equipment

5 Acquit/release.

6 Busy equipment

7 Impossible to release

8 Memory error

Table 2 : ModBus exception codes

P.26

9. Problems resolution
The list below enumerates the most frequent problems encountered when

implementing GModBus driver:

Wiring :

The most frequent wiring error is the reversal of Rx and Tx wires.

Network setting :

Some parameters of ModBus network (communication speed, stop bit, parity and

transmission mode) must be common to the master and the slave.

Serial link busy :

When a program including GModBus over Serial Line driver runs, make sure that

no other application is communicating on the port used by ModBus network.

Bad requests sequencement :

As the link used is a serial one, you must sequence properly the requests used in

the application code. You will not be able to make several requests in parallel.

P.27

INDEX

Figure 1 : Serial connector SUB D9 for PC .. 4

Figure 2: Mini serial connector DIN 8 for Macintosh .. 5

Figure 3: GModBus over Serial Line within LabVIEW palette ... 6

Figure 4: Communication opening and communication closing VIs palette 7

Figure 5: MBV_open.vi ... 7

Figure 6: Master_Tools palette ... 8

Figure 7: Master VIs connector model ... 9

Figure 8: MBV_lecNBitsSortie(1).vi .. 9

Figure 9: MBV_lecNBitsEntree(2).vi ... 10

Figure 10: MBV_lecNMotsSortie(3).vi ... 10

Figure 11: MBV_lecNMotsEntree(4).vi.. 10

Figure 12: MBV_ecrBitSortie(5).vi ... 11

Figure 13: MBV_ecrMotSortie(6).vi ... 11

Figure 14: MBV_ecrNBitsSortie(15).vi .. 11

Figure 15: MBV_ecrNmotsSortie(16).vi .. 12

Figure 16: MBV_lecStatusException(7).vi ... 12

Figure 17: MBV_diagnostic(8).vi .. 12

Figure 18: EZ Coding functions palette .. 13

Figure 19: How to implements a simple request to a ModBus Slave 13

Figure 20: How to interpret 2 words to obtain a single. .. 13

Figure 21: How to interpret a single to obtain 2 words ... 14

Figure 22: Slaves Vis palette ... 14

Figure 23: MBV_listenRequest.vi .. 14

Figure 24: Slave VIs connector model .. 15

Figure 25: MBV_repLectureNBits(1_2).vi ... 15

Figure 26: MBV_repLectureNMots(3_4).vi ... 16

Figure 27: MBV_repEcritureBit(5).vi ... 16

Figure 28: MBV_repEcritureMot(6).vi ... 16

Figure 29: MBV_repEcritureNBits(15).vi .. 16

Figure 30: MBV_repEcritureNMots(16).vi .. 17

Figure 31: MBV_repException.vi ... 17

Figure 32: Tools menu ... 18

Figure 33: Master window ... 19

Figure 34: Communication test interface in Master mode ... 20

Figure 35: Requests choice ... 20

Figure 36: Slave window .. 21

Figure 37: Communication test interface of the slave .. 22

Figure 38: Add-ons activation ... 23

file:///E:/Projet/SAPHIR/A802-OJO-SAPHIR-Vibox/Vibox_Dev/Sources/Products/ModBusVIEWoSL/Documentation/Resources/GModBus%20over%20Serial%20Line%20User%20Manual.docx%23_Toc382466757

P.28

Figure 39: Online support & resources .. 24

Other add-ons that could be helpful

http://www.saphir.fr/en/produits/gmodbus-over-tcp-6.html
http://www.saphir.fr/en/produits/gdatabase-for-sqlite-5.html
http://www.saphir.fr/en/produits/gdatabase-for-mysql-7.html
http://www.saphir.fr/en/produits/vibox---probes-10.html
http://www.saphir.fr/en/produits/vibox---xcontrols-9.html

