
ni.com/teststand

C O N T E N T S

Introduction

Edit Tab Panel Design Pattern

Preparing Visual Studio

StepTypeSettingsPanel Base Class

Using the TestStand UI Controls

Accessing Data from TestStand

Configure the Step Type to Use the Step Settings Pane

Additional Resources

Creating Custom Step Type Edit Tabs in the
Sequence Editor

http://www.ni.com/teststand

ni.com/teststand

Introduction
When developing a custom step type to meet the needs of your test system one of the essential tasks is
to offer an edit-time experience that allows users of your step type to configure the individual properties of
the step instance. This is often accomplished using an edit substep that launches a modal dialog that
handles accepting user inputs and writing out the results to the properties of your step. However, you may
be interested in offering an experience that is integrated into the TestStand Sequence Editor similar to
that of included step types without the need for modal dialogs.

TestStand offers access to the same APIs used to develop our included step types with .NET languages.
This allows you to develop an integrated edit tab panel as an alternative to an edit substep. If you are new
to custom step type development, you should read the TestStand Advanced Architecture series topic,
Best Practices for Custom Step Type Development, as the same design principles apply to custom step
types that use an edit substep or an integrated edit tab panel. This document will cover the design pattern
of the edit tab panel, requirements for developing a panel, and the necessary APIs used. While Edit tab
panels can be developed and built with any environment that can compile against the .NET Framework,
this document will focus on the use of C# with Visual Studio.

Edit Tab Panel Design Pattern
For proper development of the edit tab panel, it is important to understand the design pattern that the API
conforms to. The overall architecture of a custom step type remains unchanged when using an edit tab
panel compared to using an edit substep.

Figure 1 - Architecture of a Custom Step Type

The edit tab panel is used for handling edit-time requirements for your step type, primarily getting and
setting configurable properties for step instances. Any work that needs to be done by a step type at run-
time should be implemented in the step type sub-steps (e.g. Pre-Step and Post-Step) or in the code
module of the step type.

The Sequence Editor will create a single instance of the edit tab panel for the lifetime of the Sequence
Editor the first time that a step type using it is selected. The edit tab panel framework provides entry
points to notify the panel when it needs to refresh and it provides a data structure for accessors to get and
set properties of the steps the user has selected. More detail on this is provided in section 3 on the
StepTypeSettingsPanel Base Class.

http://www.ni.com/teststand
http://www.ni.com/product-documentation/8300/en/

ni.com/teststand

Preparing Visual Studio
the .NET Framework and Windows Forms controls is required for development of edit tab panels.
TestStand ships with a set of special controls that are provided specifically for use with step settings
panels. The functionality of the controls will be covered in more depth in section 4, Using the TestStand
UI Controls. To use these controls in your project, you must first set up your Visual Studio environment to
include them in the toolbox.

1. Open the Toolbox pane in Visual Studio.
2. Right-click in the Toolbox pane and select Add Tab menu item.
3. Name the new tab StepSettingsPaneControls.
4. Right-click on the new tab and select Choose Items menu item.
5. Click the Browse button and browse to %TestStandBin% and select TSDotNetSupport.dll
6. In the .NET Framework Components tab, sort the items by Assembly Name and scroll down to

the assembly named TSDotNetSupport.
7. Check the following items in TSDotNetSupport and uncheck all others in that assembly:

• ExpressionEdit (There are 2. Pick the one with the namespace
NationalInstruments.TestStand.SeqEdit.Support)

• PathControl
• TSButton
• TSCheckBox
• TSComboBox
• TSErrorProvider
• TSFlowLayoutPanel
• TSGroupBox
• TSLabel
• TSPanel
• TSRadioButton
• TSSplitContainer
• TSTableLayoutPanel
• TSTextBox

Setting Up the Edit Tab Project
With the toolbox properly setup, you will need to create the project for your edit tab panel. Each major
version of TestStand will require its own build of the edit tab panel targeting the correct TestStand
assembly and .NET Framework versions.

TestStand Version .NET Framework Version
2014, 2014 SP1 4.0
2016, 2016 SP1 4.6

2017 4.6

1. In Visual Studio, create a new Windows Forms Controls Library project, targeting the
appropriate .NET framework, and title it "MyStepTypePanel" for example (after going through this
tutorial, your actual project can be named whatever you like).

2. Add references to the following TestStand assemblies to the MyStepTypePanels project:
a. Choose the Add Reference menu item (right-click on References in Solution, or use

Project menu).
b. Choose the Browse tab.
c. Browse to the %TestStandBin% folder and select the following 3 assemblies:

• TSDotNetSupport.dll
• NationalInstruments.TestStand.Interop.Controls.AxControls.dll
• NationalInstruments.TestStand.Interop.Controls.dll

http://www.ni.com/teststand

ni.com/teststand

d. Click the OK button.
e. Choose the Add Reference menu item.
f. Choose the .NET tab and select the following 4 assemblies:

• TestStand <version> Adapter API Primary Interop Assembly
• TestStand <version> API Primary Interop Assembly
• TestStand <version> UI ActiveX Interop Assembly
• TestStand <version> UI Primary Interop Assembly

g. Click the OK button.
3. Change the Embed Interop Types setting on all references.

h. Select all 7 assembly references that you added to the project.
i. In the Properties pane, change the Embed Interop Types option to False.

Figure 2 - Create Project Dialog in Visual Studio 2015

StepTypeSettingsPanel Base Class
TestStand edit tab panels all inherit from the StepTypeSettingPanel base class defined in
TSDotNetSupport.dll. The StepTypeSettingsPanel base class contains the required properties and
entry points that the TestStand Sequence editor expects. Visual Studio created a user control when the
Windows Forms Control Library project was created. User control needs to be configured to inherit from
StepTypeSettingsPanel instead of the default UserControl.

1. Close all Designer windows.
2. Add the following lines to the top of your Windows Control source file:

using NationalInstruments.TestStand.SeqEdit.Support;
using NationalInstruments.TestStand.Interop.API;

http://www.ni.com/teststand

ni.com/teststand

3. Change the base type from UserControl to StepTypeSettingsPanel

 public partial class MyStepTypePanel : StepTypeSettingsPanel

4. Build the solution to verify that there are no errors.

Your user control now inherits the required data structures and entry points for use with the Sequence
Editor. Your edit tab panel now will have a single instance for the lifetime of the Sequence Editor, which is
constructed the first time that a step is selected.

 Note: Since the edit tab panel is constructed when a step is selected by the user, it is possible
that a sequence file containing your step type may be run without the edit panel code ever being
executed on subsequent loads of the file. This could occur because the file is being run in an
operator interface, or is run immediately after being loaded in the Sequence Editor. It is important
that all the state information required for your step type to operate is stored in step properties of
the sequence file and does not require the edit panel code to be run to get it in a known state.

SelectedSteps Property
All instances of your step type will share a single instance of the edit tab panel. Therefore, the
StepTypeSettingsPanel base class exposes a data structure called SelectedSteps which is a
representation of the set of steps that are currently selected in the Steps view, either of a sequence file
document or of an execution document. The SelectedSteps property is of the type StepCollection.
Some other important objects provided by the SelectedSteps are objects referencing the Adapter and
StepType properties of the current steps. Note that the Adapter and StepType properties may be null
if the selected steps do not use a common adapter or have different step types. For
StepTypeSettingsPanel classes, StepType will be guaranteed to be non-null when TestStand calls
RefreshContents(). The data structure also offers access to the EditManager which contains the
EditContext object for accessing data within TestStand.

Property Specifiers and Property Value Accessors
The other main component of the SelectedSteps object are property specifiers and property value
accessors. Property specifiers act as a replacement for TestStand lookup strings, defining how to get and
set and property value on a single property object. You can define custom property specifiers by
implementing the IPropertySpecifier interface or you can create property specifiers for generic
TestStand properties by calling the GetPropertySpecifier static method on the StepCollection
class. For instance, to get a property specifier for the Step.Result.Status TestStand property, you
call StepCollection.GetPropertySpecifier(“Result.Status”).

Property value accessors are classes that allow you to get or set values of the same property on all the
currently selected steps. You use the GetPropertyAccessor() method on the SelectedSteps
property to get a property value accessor. This method takes either a TestStand lookup string or a
property specifier object. For instance, to get a property value accessor for the Step.Result.Status
TestStand property, you call SelectedSteps.GetPropertyAccessor(“Result.Status”).

Use the Value property or the TryGetValue() method to get the common value of the property on all
selected steps. The obtained value is null if not all the selected steps have the same property value. To
get individual property values for the selected steps call the GetValues() method. Use the
SetValue() method to set the property value on all the selected steps.

http://www.ni.com/teststand
http://zone.ni.com/reference/en-XX/help/370052W-01/tsapiref/reftopics/adapter/
http://zone.ni.com/reference/en-XX/help/370052W-01/tsapiref/reftopics/steptype/

ni.com/teststand

The property value accessors handle many of the actions required for editing steps in the step settings
pane, including the following:

• Determines whether the sequence file is editable before making changes. For example, the
sequence file might be read-only, the current user might not have permissions to edit
sequence files or the sequence file might be executing.

• Automatically checks out the sequence file from source code control, if necessary.
• Records information to support undo and redo commands.

When using TestStand UI controls, property specifier will need to be specified and the control will get the
property value accessor internally to handle the getting & setting of the property.

RefreshContents Entry Point
The primary entry point that handles the getting of TestStand properties is the RefreshContents
method defined in the StepTypeSettingsPanel class. The Sequence Editor will call the
RefreshContents() method each time a step is selected or when the step settings panel tab is
selected. You will want to override this method for your panel. This method is where you can do the bulk
of the work of interpreting the user’s input. If you are using the TestStand UI controls then the work of
handling user input has already been handled for you and you can use this method to call the
RefreshControlValue() method on each of the controls to have their connected properties updated
in TestStand.

There will be instances where your step types may need more information than just the currently selected
steps. For example, the included TestStand Wait step needs a list of sequence call steps that start new
executions so that it can fill a combobox with a list of steps to wait on. There are two general strategies
that you can use to get this information. The first strategy is to recompute the information each time
RefreshContents() is called. This is the most common way and has the advantage of not requiring
additional events nor the caching of information, which can become outdated. However, you will also
want to make sure that your RefreshContents() method can exit quickly so it does not hang the
TestStand Sequence Editor. If the generation of this additional information takes too much time, then you
can have the step settings panel create an instance of another object that maintains the state separately
from the step settings panel and the panel just queries this object for the information in
RefreshContents().

Using the TestStand UI Controls
TestStand ships with a set of UI controls specifically designed for use with step type edit panels. These
controls are the same set of controls used by included step types in TestStand, offering a consistent UI
between first and third-party step types. The controls are also designed to handle TestStand-specific
functionality such as handling expressions, localization with resource strings, integration with the undo &
redo menu, and the setting of step type properties. The following panel controls are available:

Panel Controls Panel Containers
TSTextBox, TSComboBox, TSExprTextBox,
TSRadioButton, TSCheckBox, TSButton, TSLabel,
TSToolbar, TSToolbarButton

TSGroupBox, TSSplitContainer, TSPanel,
TSTableLayoutPanel, TSFlowLayoutPanel

Many of these controls are extensions of Windows Forms controls like TSTextBox or TSLabel and offer
the same functionality as their Windows forms counterparts. Other controls are specific to TestStand, like
TSExprTextBox, offering the same expression editing experience as is available elsewhere in the
Sequence Editor.

http://www.ni.com/teststand
http://www.ni.com/tutorial/6046/en/

ni.com/teststand

Figure 3 - TestStand UI Controls in a Windows Control

Connecting to Step Properties
One of the primary advantages of using the TestStand UI controls over standard .NET controls is the
ability to connect the controls directly to step properties in TestStand. This is handled using
PropertySpecifier objects to define what step property the control should write its value to. Typically,
you will want to set the PropertySpecifier for the control during the initialization of your step type
panel, which can be done by overriding the Initialize method of the StepTypeSettingsPanel base
class. To get the property specifier, you need to access the static class StepCollection and call
GetPropertySpecifier(). The necessary lookup string to pass, GetPropertySpecifier() should
be relative to the “Step” property in TestStand. Once you have this object you can set it to the
PropertySpecifier property of the control.

For instance, you may have an Initialize method similar to the following:

protected override void Initialize()
 {
 base.Initialize();

exampleTextBox.PropertySpecifier =
StepCollection.GetPropertySpecifier("Result.Status");

 }

With the controls connected to the necessary step properties, you will need to add the code to your
RefreshContents() method to handle updating the value of the TestStand property with the control
value. The TestStand UI controls offer the method RefreshControlValue() that will write the current
value of the control to the TestStand property.

Your resulting RefreshContents() method should be similar to the following:

protected override void RefreshContents(RefreshReasons refreshReason)
 {
 //additional RefreshContents work
 exampleTextBox.RefreshControlValue();
 }

Additional Features
The TestStand UI controls support connecting to the TestStand localization feature. Localization is
handled just like in TestStand using Resource Strings. For your panel you will need to create a new
Resource String Category that contains all the necessary resource strings that your panel will use. It is

http://www.ni.com/teststand
http://www.ni.com/tutorial/6046/en/

ni.com/teststand

recommended that you create a new INI file that encapsulates this functionality, to better support
deploying your custom step type independently of other TestStand resource strings.

To use your localized resource strings, you will first need to set the resource string category used by your
panel. One of the properties inherited by the StepTypeSettingsPanel base class is the
ResourceStringCategory property. You will need to set this property to your resource string category
defined in your INI file. This property can be set by opening the designer view of your step type edit panel
and selecting the background to view the properties of your panel, here you will find the
ResourceStringCategory property to set. You can now use your resource strings to set localizable
text for your UI controls. For any text field of your UI control, set the value to be the resource string to
replace. Note that if that resource string is not found, then the text will be displayed as is.

Finally, there are several other kinds of TestStand functionality added to the UI controls. Some important
properties to be aware of:

• CommandDescription: The text to display in Edit»Undo menu for this control after the user
changes the control value. The text in this field supports localization.

• HighlightNonDefaultValues: If the value is not default and this is true, it will be shown in bold.
The default value is determined by the value of the property on the step type.

• Label: The TSLabel object associated with this UI control. If the box is disabled, the label will be
updated as well if linked.

• Numeric: For UI controls that support text input, like TSTextBox. Set to true if displaying a
numeric value.

Accessing Data from TestStand
EditContext
There are instances that your step type edit panel needs to access data from TestStand, like in the case
that you wish to populate a control with values pulled from your sequence file. In a code module, this kind
of task would be accomplished by using the TestStand API on a SequenceContext object. The
SequenceContext that is used in that case is an object that only exists at run-time to represent the state
of the system. Since the step type edit panel code is executed at edit time, a similar object is available
called EditContext. The EditContext is an object that is also of the SequenceContext type, but
instead of representing the run-time state, it instead represents the best edit-time approximation of a
SequenceContext.

To access the EditContext you will need to use the SelectedSteps data structure. One of the
properties of SelectedSteps is an object called the EditManager. The EditManager provides
access to several edit-time properties, the most important being EditContext. A call into the
EditContext object should look like: this.SelectedSteps.EditManager.EditContext.

From there you can use the EditContext with the TestStand API to access data in the TestStand
engine as you normally would in a code module with SequenceContext. This should only be used for
reading data from TestStand, your step settings panel should not be changing properties other than step
properties through UI controls and property value accessors.

Configure the Step Type to use the Step Settings Pane
Once your custom step type edit panel has been developed you will need to configure the step type to
use the step settings pane that you just created. You will need to build a second class that exposes
additional information about your step type to TestStand and then point the step type to your assembly
and the new info class.

http://www.ni.com/teststand

ni.com/teststand

1. Create a new class that specifies the tab information for the step settings pane:
a. In a new file or at the bottom of the MyStepTypePanel.cs file within the same namespace,

insert a new class called MyStepTypeTabInfo that derives from the
StepTypeEditPanelTabInfo base class.

b. Add the CreatePanel method to create an instance of the MyStepTypePanel class.
c. Add the TextExpr property to the class to specify an expression that evaluates to the text to

display in the tab. The code below uses the ResStr expression function to set the tab text to a
string from a resource file.

d. Add the IconName property to the class to specify an expression that evaluates to the name
of the icon to display in the tab. The code below sets the icon to the Goto step icon.

public class MyStepTypeTabInfo : StepTypeEditPanelTabInfo
 {

public override StepSettingsPanel CreatePanel() { return new
MyStepTypePanel(); }

 public override string IconName { get { return "goto.ico"; } }
public override string TextExpr { get { return "ResStr(\"GOTO_STEP_TYPE\",
\"TAB_TEXT\")"; } }

}

2. Build the solution.

Figure 4 - Configuring the Edit Panels Property to Use a Custom Step Type Edit Tab

3. In TestStand, edit the step type to use the new step settings panel:

a. Enable the Show Hidden Properties Station option (Configure»Station
Options»Preferences tab).

b. Expand the step type properties in the Types window in the Sequence Editor.
c. Increase the size of the NI_Data.EditPanels array property to add a new element.
d. Change the text for the item you added to be of the form "<dll

name>|<namespace>.<TabInfo classname>". In this case, we will change the text to
"MyStepTypePanels.dll|MyStepTypePanels.MyStepTypeTabInfo", where
MyStepTypePanels.dll is the assembly that your project built and
MyStepTypePanels.MyStepTypeTabInfo is the fully specified class name for the class
you created above.

4. In TestStand, add the directory that contains the assembly to the TestStand search directories, or
move the assembly to a directory in the TestStand search directories, such as
%TestStandPublic%.

http://www.ni.com/teststand

ni.com/teststand

Additional Resources
Included with this document is an example step type that uses a custom step type edit panel. You can
explore this example to see an implementation of the above concepts. When opening the solution, you
will need to update the referenced TestStand assemblies to point to the correct version and locations on
disk for your version of TestStand. The solution is currently configured to build for TestStand 2017 64-bit.

To learn more about custom step types in general, see the TestStand Custom Step Types help topic.

In addition, you should read the Best Practices for Custom Step Type Development topic of the
TestStand Advanced Architecture Series.

If you have any feedback or questions about this content, please email ats.pse@ni.com.

http://www.ni.com/teststand
https://zone.ni.com/reference/en-XX/help/370052W-01/TOC37.htm
http://www.ni.com/product-documentation/8300/en/
http://www.ni.com/product-documentation/7022/en/
mailto:ats.pse@ni.com

	Introduction
	Edit Tab Panel Design Pattern
	Preparing Visual Studio
	Setting Up the Edit Tab Project

	StepTypeSettingsPanel Base Class
	SelectedSteps Property
	Property Specifiers and Property Value Accessors
	RefreshContents Entry Point

	Using the TestStand UI Controls
	Connecting to Step Properties
	Additional Features

	Accessing Data from TestStand
	EditContext

	Configure the Step Type to use the Step Settings Pane
	Additional Resources

