

NI LabVIEW RIO Evaluation Kit
[Tutorial]

LabVIEW RIO Evaluation Kit - 2 - ni.com/rioeval/nextstep

NI LabVIEW RIO Evaluation Kit
Tutorial

Welcome to the LabVIEW RIO Evaluation Kit tutorial. This document

contains step-by-step instructions for experiencing embedded design using

the NI LabVIEW system design software with the standard NI

reconfigurable I/O (RIO) hardware architecture. Specifically in this

evaluation the LabVIEW Real-Time and LabVIEW FPGA development

modules and the NI Single-Board RIO hardware platform will be used to

create an embedded control and monitoring system. The entire LabVIEW

RIO Architecture, beyond the tools covered in this evaluation kit, includes a

wide range of hardware and software products with a similar embedded

system programming experience; visit ni.com/embeddedsystems for more

information.

Note: It may be easier to complete the step-by-step exercises if you print this
document before proceeding. Otherwise, the Table of Contents contains links to
the exercises for more convenient navigation of this document.

http://www.ni.com/embeddedsystems/

LabVIEW RIO Evaluation Kit - 3 - ni.com/rioeval/nextstep

Table of Contents

Tutorial Overview .. 4

Navigating Exercises ... 9

Using the Solutions ... 9

Troubleshooting .. 10

Activating LabVIEW .. 10

Getting Started – LabVIEW Programming Basics .. 11

Initial System Configuration .. 12

Exercise 1 – Open and Run LCD Application ... 15

Explore the Application .. 15

Deploy and Run Your First LabVIEW RIO Application .. 18

Exercise 2 – Create a Monitoring and Control FPGA Application ... 20

Acquire Button Presses ... 22

Monitor the Battery Cell Temperature ... 29

Acquire the Motor Encoder PWM and Convert to RPMs ... 31

Monitor the Battery Cell Voltage and Control Power Distribution .. 34

Exercise 3 – Develop a Real-Time Application .. 38

Communicate with the FPGA .. 42

Forward Data onto the Windows Target .. 47

Implement Decision Logic for LCD Screen .. 50

(Optional) Test the Real-Time and FPGA Applications .. 57

Exercise 4 – Create a Windows User Interface ... 62

Explore the Windows-Based Application User Interface .. 66

Finish Development of the Windows-Based Application User Interface 69

Run and Verify the Completed System .. 72

Exercise 5 – Application Deployment and Replication ... 74

Create and Deploy a Startup Real-Time Executable ... 75

Save a System Software Image and Deploy to Formatted Hardware 78

Appendix A – LabVIEW RIO Training Path ... 85

Appendix B - Changing the IP Address in the LabVIEW Project ... 90

LabVIEW RIO Evaluation Kit - 4 - ni.com/rioeval/nextstep

Tutorial Overview
In this tutorial, you will complete five exercises that demonstrate how to develop an embedded

system using LabVIEW system design software and NI reconfigurable I/O (RIO) hardware

which includes a real-time processor, FPGA, and I/O. Using the LabVIEW RIO Evaluation Kit,

your challenge will be to prototype an embedded control and monitoring system for an electric

vehicle battery management system. Here is a system diagram of the battery management

system that you will build up in these exercises:

Battery Management System Specifications

Monitoring Tasks

1. Battery cell temperature

2. Battery cell voltage

3. Motor encoder signal

4. HMI push buttons

Control Tasks

1. Power distribution mode (i.e. charging, drawing, or overvoltage)

2. LCD screen

LabVIEW RIO Evaluation Kit - 5 - ni.com/rioeval/nextstep

The LabVIEW RIO Architecture includes a standard hardware architecture that includes a

floating point processor running a Real-Time Operating System (RTOS), an FPGA target, and I/O

which can be programmed using a single development tool chain, LabVIEW. The system you

are developing in this tutorial will include both a RIO board-level device and your Windows PC.

Since LabVIEW includes a cross-compiler, it can be used to develop applications that will run on

a floating point processor, an FPGA target, and a Windows PC.

LabVIEW RIO Evaluation Kit - 6 - ni.com/rioeval/nextstep

Using the flexibility of the three different target types, the requirements of the electric vehicle

battery management system outlined in the previous pages has been mapped to tasks on each

of the targets of the system (Windows UI, Real-Time microprocessor, and FPGA):

LabVIEW RIO Evaluation Kit - 7 - ni.com/rioeval/nextstep

Finally, since you do not have an actual electric car battery system to control and monitor here

is how you will simulate it using the on-board I/O of the NI-RIO Evaluation Device:

Note: If you would like to open and modify the system diagram shown above you can
download the free editor at http://www.yworks.com/yed and load the diagram files from
.\Tutorials\Additional Resources\LabVIEW RIO Eval Kit – SysDiagram.

http://www.yworks.com/yed

LabVIEW RIO Evaluation Kit - 8 - ni.com/rioeval/nextstep

To build up the control and monitoring system outlined, you will design the components of the
system through each of the tutorial exercises:

Exercise 1: Open and Run LCD Application

Open and run a precompiled embedded system to control the LCD screen and review the
documentation of the source code to understand how the application works.

Exercise 2: Create a Monitoring and Control FPGA Application

Create an FPGA application on your own to acquire data from and control your I/O for the
battery management system. While this application is compiling, complete Exercise 3.

Exercise 3: Develop Real-Time Application

Design a real-time application running on a processor which communicates with the FPGA
controlling the LCD screen and coordinates network communication back to your Windows
user interface.

Exercise 4: Create a Windows User Interface
Extend the embedded system to include a user interface running on a Windows computer to
display the current status of your battery management system.

Exercise 5: Application Deployment and Replication
Now that your battery management system is complete, learn how to deploy and replicate the
system.

After completing these exercises, explore a variety of LabVIEW Real-Time and LabVIEW FPGA
applications, getting started resources, more tutorials built for the kit, and the RIO platform
products on an online Community for LabVIEW RIO Evaluation Kit owners at
ni.com/rioeval/nextstep.

https://decibel.ni.com/content/groups/labview-rio-evaluation-kit

LabVIEW RIO Evaluation Kit - 9 - ni.com/rioeval/nextstep

Navigating the Exercises
The LabVIEW RIO Evaluation Kit installs several helpful exercises on your development
machine that you can explore to learn more about LabVIEW Real-Time and LabVIEW FPGA
software. By default, these exercises install on your computer’s C: drive at

Windows 7
C:\Users\Public\Documents\National Instruments\LabVIEW RIO Evaluation
Kit\Tutorials

Windows XP
C:\Documents and Settings\All Users\Documents\National Instruments\LabVIEW
RIO Evaluation Kit\Tutorials

Alternatively, you may locate these files from the Start menu at All Programs » National
Instruments » LabVIEW RIO Evaluation Kit » Tutorial Folder. The original files are also located
on the DVD included in the evaluation kit.

Using the Solutions
In addition, each exercise has a _Solution folder within it so if for any reason you are not able to
complete an exercise successfully feel free to open the solution and/or use it to continue on to
the next exercise. You will need to modify the solutions in the following ways to work with
your specific evaluation hardware:

1. Update the LabVIEW project with your device’s IP address. Reference Appendix B for
more details on this process.

2. For Exercise 4 and 5 the solution requires that you update the IP address on the
Windows UI.vi front panel to match the IP address of your LabVIEW RIO Evaluation
device. Reference Step 1-4 of Exercise 4 on Page 66 for more details on how to do this.

LabVIEW RIO Evaluation Kit - 10 - ni.com/rioeval/nextstep

Troubleshooting
If you have any questions or run into any configuration issues while exploring this evaluation kit,
please review the LabVIEW RIO Evaluation Kit Frequently Asked Questions online at
ni.com/rioeval/faq. This document contains information on how to change your IP address or
reconnect to your device, and includes answers to basic FPGA compilation questions.

Activating LabVIEW
The evaluation kit installs a 90-day full evaluation version of LabVIEW; you will be prompted to

activate LabVIEW when you open the environment. To continue in evaluation mode, click the

“Launch LabVIEW” button.

http://www.ni.com/white-paper/14118/en/

LabVIEW RIO Evaluation Kit - 11 - ni.com/rioeval/nextstep

Getting Started – LabVIEW Programming Basics

If you are new to LabVIEW, this section will help you learn more about the LabVIEW
development environment and graphical programming language. You can also use the web
links in your Additional Resources folder to view Getting Started with LabVIEW videos and
online demonstrations.

This tutorial assumes you ran the LabVIEW RIO Evaluation Setup utility upon reboot. If you
have not done so, run it now. You can access the utility from your Windows Start menu, select
All Programs » National Instruments » LabVIEW RIO Evaluation Kit » Setup Utility.

The hardware device included in your kit is based on the NI Single-Board RIO (reconfigurable
I/O) platform and presents a hardware architecture found on other NI RIO devices which
consist of two processing devices: a real-time processor that you can program with the
LabVIEW Real-Time Module and an FPGA that you can program with the LabVIEW FPGA
Module. These devices are connected by a PCI bus and the LabVIEW development
environment includes built-in interfaces for communicating between them. The hardware
device in your kit will be referred to as your “NI-RIO Evaluation HW” in this tutorial.

A LabVIEW application is called a “VI”, or virtual instrument, and is composed of two primary
elements: a front panel and a block diagram, which you can program using the LabVIEW
Functions Palette.

 Front panel – The front panel is what you use to create a LabVIEW user interface (UI).
For embedded applications, such as FPGA applications, you either create subfunctions,
or subVIs, where controls and indicators are used to pass data within the target
application or you use the front panel to define sockets/registers that are exposed to
other elements of your system (such as the real-time processor) with read/write access.

Note: If you close the front panel, it will also close the block diagram, so be sure to
minimize it instead if you wish to use the block diagram.

 Block diagram – The block diagram is where you program LabVIEW applications using a
combination of graphical and textual notations. To program the block diagram, right-click
anywhere on the diagram (blank white window) to bring up the Functions palette.
Objects on the front panel window appear as terminals on the block diagram. Terminals
are entry and exit ports that exchange information between the front panel and block
diagram. Terminals are analogous to parameters and constants in text-based
programming languages.

 Functions palette – The Functions palette contains components for creating FPGA, RT,
and host interface applications. To do this, place the components on the block diagram
and wire them together by left-clicking on a terminal and dragging the wire to your
destination, completing this wire segment with another left-click.

Using the functions palette – In this tutorial, bold text denotes an item to select from the
Functions palette. To access the Function palette, right-click anywhere on the LabVIEW block

LabVIEW RIO Evaluation Kit - 12 - ni.com/rioeval/nextstep

diagram. You can also “pin” the functions palette (in the upper left corner of its window) so
that it is always present on the block diagram.

More on Using LabVIEW - To learn more about the LabVIEW graphical programming

environment including syntax, deployment, debugging, and more, reference

http://www.ni.com/gettingstarted/labviewbasics/.

Initial System Configuration

NI-RIO Evaluation Hardware

1. If you haven’t already, complete the Setup Wizard located at Start»All

Programs»National Instruments»LabVIEW RIO Evaluation Kit»Setup Utility

2. Use the included NI screw driver and wire to connect the Signal Generator OUT and

AGND terminals to the AI0 and AGND terminals as shown below.

3. In preparation for application development verify that the function generator is set to 0-

1KHz and Square Wave generation.

http://www.ni.com/gettingstarted/labviewbasics/

LabVIEW RIO Evaluation Kit - 13 - ni.com/rioeval/nextstep

LabVIEW Environment

1. Launch LabVIEW and navigate to the Tools»Options… menu. Click on the Block
Diagram category and uncheck the Place front panel terminals as icons check box. Click
OK. This will conserve space on the block diagram.

2. Create a new application (called a VI) by selecting File»New VI. Click on the Block
Diagram window to bring it to the front and right-click it to make the Functions Palette
appear. Pin down the Functions Palette (upper left corner of its window) and click on
Customize»Change Visible Palettes…

LabVIEW RIO Evaluation Kit - 14 - ni.com/rioeval/nextstep

3. Click Deselect All and then check the following palettes that you will use in this tutorial.
Once you are done click OK.

Palettes Needed

Programming
Connectivity
Real-Time

FPGA Interface

4. Close the Untitled 1.vi without saving it.

LabVIEW RIO Evaluation Kit - 15 - ni.com/rioeval/nextstep

Exercise 1 | Open and Run LCD Application

Summary
In this exercise you are going to open and run a preconfigured application that communicates

between the Real-Time Microprocessor and FPGA to scroll text across the hardware’s LCD

screen. To deploy the application, you will complete the following tasks:

1. Explore the Application

2. Deploy and Run Your First LabVIEW RIO Application

Explore the Application

1. Open up the Exercise 1 LabVIEW project file by navigating to .\1- OpenRun LCD

Screen\Exercise 1-Open Run LCD Screen.lvproj.

2. Change the IP address of the NI-RIO Evaluation HW target in the Project Explorer

window to match the IP address of your evaluation board.

a. Right-click the NI-RIO Evaluation HW target in the Project Explorer window and

select Properties from the menu to display the General properties page.

b. In the IP Address / DNS Name box, enter the IP address you wrote down from

the National Instruments LabVIEW RIO Evaluation Kit Setup utility and click OK.

Note: If you forgot to write down the IP address from the setup utility and need to determine

the IP address of your RIO device, see Appendix B - Changing the IP Address in the LabVIEW

Project at the end of this tutorial for further instructions.

LabVIEW RIO Evaluation Kit - 16 - ni.com/rioeval/nextstep

3. In the project, expand out the NI-RIO Evaluation HW target, Chassis, and then the FPGA

Target. Note there are separate VIs for the Real-Time Microprocessor and the FPGA.

Double-click on the FPGA.vi.

4. Note that the front panel of an FPGA application is simple as it is not intended to be

used as a User Interface (UI) but instead the controls/indicators represent the FPGA

registers that are accessible for communication between the FPGA and the real-time

processor.

5. Open the block diagram by pressing CTRL+E or navigating to Window»Show Block

Diagram and observe that the FPGA VI uses a low-level LCD driver API to interface

directly with the digital I/O lines that drive the LCD screen. Press CTRL+H to open the

Context Help window, which gives details about the code your cursor interacts with.

6. Close the FPGA VI.

7. In the project, navigate to and double-click on the RT Microprocessor.vi that will execute

on the Real-Time Operating System (RTOS) running on the processor.

8. Note that this front panel is also very simple because the real-time operating system is

headless, without graphics support. As a result, the front panel of a real-time application

is useful for development and debugging but should not be used for final deployment.

LabVIEW RIO Evaluation Kit - 17 - ni.com/rioeval/nextstep

9. Open the block diagram by pressing CTRL+E.

10. Observe on the left side of your block diagram that the real-time application opens a

reference to a pre-compiled bitfile that will run on your FPGA Target with the resource

name RIO0 from your project. Then commands are sent to the FPGA to drive the LCD

screen based on those commands through digital I/O lines.

You will be writing text to the LCD screen and then scrolling it across the display moving right

or left.

LabVIEW RIO Evaluation Kit - 18 - ni.com/rioeval/nextstep

Deploy and Run Your First LabVIEW RIO Application

1. Deploy and run the real-time application by pressing the Run button on the toolbar

for the RT Microprocessor.vi. Select Save if it prompts you.

Once you kick off the deployment, a dialog box will appear showing the current

compilation process and then will deploy the application down to the microprocessor on

the NI-RIO Evaluation Device. In this case, the FPGA VI is deployed through the real-

time VI so it is not required to deploy it separately.

Note: When the following conflict dialog appears click OK as you want to overwrite the

initial application that was loaded on the real-time processor during the wizard

configuration.

2. Keep the real-time application running. View the LCD screen on your target and the

scrolling text. Click on the direction horizontal toggle switch on the front panel of your VI

to scroll the text in the opposite direction. Click on the STOP button.

3. Modify the text string control with a word or short phrase of your choosing to display on

the LCD screen. Press the Run button and select Save if it prompts you.

4. View your text scroll on the LCD screen. When finished, click on the STOP button.

LabVIEW RIO Evaluation Kit - 19 - ni.com/rioeval/nextstep

Note: If you are unable to see your text make sure the LCD Contrast is set appropriately (left of

the LCD screen). Otherwise consult the Troubleshooting section on page 10.

5. When you are finished exploring the project, right-click on the NI-RIO Evaluation HW

target in the LabVIEW project and select Disconnect. Note the bright green Boolean

turns off, indicating the target is disconnected. Finally, close out all the LabVIEW files

and save the files if prompted.

Tip: If you do not disconnect your current LabVIEW project from the target, then any

subsequent LabVIEW projects that you attempt to deploy files from will present an error. To

release this reservation, press the reset button to reboot the device.

Congratulations, you have deployed and run your first LabVIEW built

embedded application on RIO hardware!

LabVIEW RIO Evaluation Kit - 20 - ni.com/rioeval/nextstep

Exercise 2 | Create a Monitoring and Control FPGA Application

Summary
To start the development of your embedded system you are going to create the LabVIEW

FPGA application which acquires data from and controls your I/O for the Battery Management

System. In this exercise you will implement these four tasks:

1. Acquire Button Presses

2. Monitor the Battery Cell Temperature

3. Acquire the Motor Encoder PWM and Convert to RPMs

4. Monitor the Battery Cell Voltage and Control Power Distribution

LabVIEW RIO Evaluation Kit - 21 - ni.com/rioeval/nextstep

What am I going to accomplish in this exercise?

In this exercise you will develop the FPGA application which has direct access to the

hardware’s I/O, to acquire samples on inputs and drive control through outputs. You will

implement monitoring logic for the battery cell voltage, battery cell temperature, motor

encoder, and on-board push buttons. Based on the current voltage and temperature your

FPGA logic will then control digital outputs to the system – in this case controlling on-board

LEDs.

LabVIEW RIO Evaluation Kit - 22 - ni.com/rioeval/nextstep

Acquire Button Presses
In this section you will develop logic to acquire the push button presses on the NI-RIO

Evaluation Device and communicate them to other parts of the FPGA application and to the

real-time application.

1. In LabVIEW select File»Open Project… and open up the Exercise 2-FPGA project file in

the Exercise 2 folder at .\2- Create FPGA Application\.

2. Change the IP address of the NI-RIO Evaluation HW target in the Project Explorer

window to match the IP Address of your evaluation board.

a. Right-click the NI-RIO Evaluation HW target in the Project Explorer window and

select Properties from the menu to display the General properties page.

b. In the IP Address / DNS Name box, enter the IP address you wrote down from

the National Instruments LabVIEW RIO Evaluation Kit Setup utility and click OK

c. Right-click on the NI-RIO Evaluation HW target in the Project Explorer window

and select Connect to verify connection to the device.

d. Click OK if a dialog appears requesting to overwrite the files that are still running

on the device from Exercise 1.

Note: If you forgot to write down the IP address from the setup utility and need to determine

the IP address of your RIO device, see Appendix B - Changing the IP Address in the LabVIEW

Project at the end of this tutorial for further instructions.

LabVIEW RIO Evaluation Kit - 23 - ni.com/rioeval/nextstep

3. Expand out the NI-RIO Evaluation HW target and Chassis in the Project Explorer to

expose the FPGA target.

4. Double-click on FPGA.vi to open up the existing LabVIEW FPGA application.

5. Select the block diagram by pressing CTRL+E or navigating to Window»Show Block

Diagram.

6. Observe that the LCD Display from FPGA/RT while loop has already been inserted from

the Functions palette (Connectivity»LCD»Hitachi HD44780»Command Handling Loop)

as well as a while loop for each of the tasks that will be programmed.

Note: Each of the while loops on a LabVIEW FPGA VI executes in true parallelism since each

task is mapped to dedicated logic on the FPGA. Also because the loops are implemented in

dedicated hardware logic the stop conditions are wired to false constants.

LabVIEW RIO Evaluation Kit - 24 - ni.com/rioeval/nextstep

7. To re-use Intellectual Property (IP) already built for LabVIEW FPGA button selection

navigate back to the Exercise 2-FPGA project window, expand out the FPGA SubVIs

folder, and drag the State Selector VI into the FPGA VI.

8. Once the subVI is inserted into the FPGA Button Press while loop, double-click on it to

bring up its front panel and press CTRL+E to view the block diagram code.

Note: As shown in the figure below, the block diagram of the State Selector VI reads in the

digital input lines from the four outer onboard push-buttons and uses a case structure to select

the appropriate display state. DIO12 corresponds to Push Button 1 (PB1 on the board), DIO13

corresponds to PB2, and so on.

9. Close out the State Selector front panel and block diagram to return back to the FPGA.vi

Note: Save the VI if prompted when closing it.

LabVIEW RIO Evaluation Kit - 25 - ni.com/rioeval/nextstep

10. To control and keep track of the state of the LCD Screen, an enumerated type control

(enum) constant has been created. An enumerated type control lets you create a

numbered list of named items from which to select.

To insert the enum, back in the Project Explorer, expand out the FPGA Custom Controls

folder and drag the Display State.ctl to the left of the FPGA Button Press while loop as

shown.

11. Wire the enum constant through the edge of the while loop and into the Display State In

input of the State Selector subVI. Wire the Display State Out output of the State

Selector subVI to the right side of the while loop, creating a tunnel on the loop border.

Tip: Reference the Getting Started – LabVIEW Programming Basics section on page 11 for

more information about how to wire and other LabVIEW environment fundamentals.

12. Right-click on the left-hand tunnel created on the while loop and select Replace with

Shift Register from the drop down menu. LabVIEW replaces the tunnel you right-clicked

with a shift register terminal, and the cursor becomes a shift register icon (). Hover

over the tunnel on the opposite side of the loop until it flashes, then click the tunnel to

replace it with a shift register. A shift register enables the passing of data from one loop

iteration to the next.

LabVIEW RIO Evaluation Kit - 26 - ni.com/rioeval/nextstep

13. To communicate with the real-time application, switch to the front panel of the FPGA VI

and drag in the following controls and indicators from the directed location and rename

with the exact spelling, capitalization, and spacing as shown in the table below:

Control/Indicator Type Palette Location Name

Boolean Indicator Modern»Boolean»Round LED Temp Warning

Numeric Indicator Modern»Numeric»Numeric
Indicator

Temp

Numeric Indicator Modern»Numeric»Numeric
Indicator

RPM

Numeric Indicator Modern»Numeric»Numeric
Indicator

Voltage

Numeric Control Modern»Numeric»Numeric
Control

Max Temp

Custom Indicator From Project Explorer»FPGA
Custom Controls»BatteryState.ctl

Battery State

Custom Indicator From Project Explorer»FPGA
Custom Controls»DisplayState.ctl

FPGA Display Command

Note: For the custom indicators navigate to the Project Explorer window, expand the NI-

RIO Evaluation HW»Chassis»FPGA Target»FPGA Custom Controls folder and drag in

the specified items.

14. By default the custom controls are dropped down as controls on the front panel. Right-

click on Battery State and select Change to Indicator. Repeat this for the FPGA Display

Command control.

15. Right-click on the Temp indicator, select Properties, and click on the Data Type tab. Click

on the Representation icon that shows I16, and in the menu that appears select FXP.

LabVIEW RIO Evaluation Kit - 27 - ni.com/rioeval/nextstep

Note: The FPGA will be acquiring data in decimal format, however in contrast to

microprocessors, FPGAs do not inherently have floating point processing units on-chip, so

instead the fixed point data type is commonly used to represent non-integer values. To learn

more about fixed-point numbers search Fixed Point Numbers on ni.com.

16. Enter the following values to define the Encoding value, Integer word length and the

Word length which communicates to LabVIEW the maximum size of the integer portion

of the data and the maximum overall integer plus decimal representation required.

Encoding: Signed

Word length: 32 bits

Integer word length: 13 bits

17. Repeat steps 15 and 16 for the two remaining numeric indicators and one numeric

control with the following Encoding values, Word lengths, and Integer word lengths:

Control/Indicator Name Encoding Word length (bits) Integer word length (bits)

RPM Unsigned 32 16

Voltage Signed 24 5

Max Temp Signed 32 13

LabVIEW RIO Evaluation Kit - 28 - ni.com/rioeval/nextstep

18. Toggle back to the block diagram and arrange the controls and indicators as shown in

the figure below.

19. Branch the Display State Out output wire of the State Selector subVI and connect it to

the FPGA Display Command indicator.

The FPGA Button Press handling loop is now complete and should look as follows:

20. Save the FPGA VI by selecting File»Save or pressing CTRL+S.

LabVIEW RIO Evaluation Kit - 29 - ni.com/rioeval/nextstep

Monitor the Battery Cell Temperature
The next while loop will acquire the battery cell temperature voltage, scale it to degrees Celsius

and compare it against a maximum temperature for alarming purposes.

1. In the Project Explorer window under the FPGA Target expand out Connector0 which

exposes the I/O channels available from that connector. Locate the Temp

(Connector0/AI7) channel and drag it into the left-hand side of the Convert Voltage to

Temp while loop.

2. Still in the Project Explorer window, expand out Connector1 and locate the LEDWarning

(Connector1/DIO9) digital channel. Drag and insert it on the right-hand side of the while

loop.

LabVIEW RIO Evaluation Kit - 30 - ni.com/rioeval/nextstep

3. Right-click on the center of the LEDWarning I/O node and change it to write mode by

selecting Change to Write from the menu that appears.

4. To re-use IP already generated to scale the temperature units, expand the FPGA SubVIs

folder under the FPGA Target in the Project Explorer, and select the Convert to Temp.vi.

5. Drag the Convert to Temp.vi into the middle of the Convert Voltage to Temp while loop.

6. Insert a Greater? logic comparison (Functions»Programming»Comparison) into the while

loop and wire up all the components in the loop as shown below.

7. Save the FPGA VI by selecting File»Save or pressing CTRL+S.

LabVIEW RIO Evaluation Kit - 31 - ni.com/rioeval/nextstep

Acquire the Motor Encoder PWM and Convert to RPMs
Next the motor encoder PWM signal (simulated by a square wave signal generator) will be

captured on an input channel then converted to number of periods using a built-in Analog

Period Measurement VI. To convert the simulated signal to RPMs, the acquisition rate is then

divided by the number of periods calculated to get an RPM value.

1. In the Project Explorer window under the FPGA Target expand out Connector0 and drag

EnginePWM (Connector0/AI0) into the left-hand side of the Getting PWM while loop.

2. Locate the Analog Period Measurement VI from the Functions»Programming»FPGA

Math & Analysis palette and place it to the right of the EnginePWM I/O node.

After insertion, the Analog Period Measurement VI configuration dialog box will appear,

click Cancel. Wire the EnginePWM output to the input data input terminal on the Analog

Period Measurement VI.

3. Now double-click on the Analog Period Measurement VI to again bring up the

configuration dialog box. Configure it with these settings:

Level: 1

Hysteresis: 0.5

Interpolate crossings: Checked

Direction: Rising

Number of periods: 1

LabVIEW RIO Evaluation Kit - 32 - ni.com/rioeval/nextstep

4. Drop down a Loop Timer VI (Functions»Programming»Timing), and in the dialog box that

appears, specify a Counter Unit of usec. Leave the size of internal counter at its default

5. Right-click on the Count (usec) input of the Loop Timer and select Create»Constant.

Enter a value of 100, so that the acquisition loop for the EnginePWM will run at 100

microseconds (10kHz rate).

6. Insert the High Throughput Divide VI (Functions»Programming»FPGA Math & Analysis

»High Throughput Math) on the right-hand side of the Getting PWM while loop. This will

divide the 10 kHz acquisition rate by the number of PWM periods that occurred during

that timeframe, in order to get the RPM frequency.

7. Double-click on the High Throughput Divide VI to bring up the function’s configuration

and set the Fixed-Point Configuration of the x/y output to Word length: 32 bits and

Integer word length: 16 bits.

8. Drop down a Numeric Constant (Functions»Programming»Numeric) next to the x input

of the High Throughput Divide VI and set its value to be 10000.

9. To change the default numeric to fixed-point:

 Right-click on the constant, select Properties from the shortcut menu, and then

select the Data Type tab.

 Click on the icon underneath the Representation heading, select FXP, and

uncheck the Adapt to entered data checkbox.

 Enter 32 bits as the Word length and 32 bits as the Integer word length (in this

case there will not be any decimal represented). Set the Encoding to be

Unsigned. Click OK to exit the properties dialog.

LabVIEW RIO Evaluation Kit - 33 - ni.com/rioeval/nextstep

10. Drag a Case Structure around the constant, High Throughput Divide and RPM indicator.

11. Wire the output valid Boolean output of the Analog Period Measurement VI to the case

selector of the case structure (input terminal with a question mark on it), so that the

division and RPM value update occurs only when the period measurement calculation is

valid. Ensure there is nothing in the false case of the Case Structure by left-clicking on

the Case Selector label that currently says True.

12. Wire the rest of the components in the loop as highlighted in red below.

13. Save the FPGA VI by selecting File»Save or pressing CTRL+S.

LabVIEW RIO Evaluation Kit - 34 - ni.com/rioeval/nextstep

Monitor the Battery Cell Voltage and Control Power Distribution
The last FPGA-based task is to acquire the current battery cell voltage, and based on its

level assert digital output lines in order to control power distribution to charge the cell,

draw off the cell, or throw an error if it has reached the voltage limit.

1. In the Project Explorer window under the FPGA Target expand out Connector0 and drag

BattVolt (Connector0/AI6) into the left-hand side of the Get Battery State while loop.

2. To assert the digital lines, expand out Connector1 in the Project Explorer and drag over

the following digital lines into the right-hand side of the same loop.

Digital Lines

Connector1»Charged (Connector1/DIO6)

Connector1»Running (Connector1/DIO5)

Connector1»LowBatt (Connector1/DIO4)

LabVIEW RIO Evaluation Kit - 35 - ni.com/rioeval/nextstep

3. Hover over the Charged digital I/O node that was inserted in the last step until the

cursor changes to a hand. Then right-click on the node and select Change to Write.

4. Repeat step 3 for the remaining two digital I/O nodes.

5. In the Project Explorer window, under the FPGA Target expand out the FPGA SubVIs

folder and drag the Determine Battery State.vi into the middle of the Get Battery State

while loop.

6. Wire up the components in the Get Battery State while loop as highlighted in red below,

with the Fully Charged, Running, and Low Battery subVI outputs wired to the

appropriate I/O node.

7. Save the FPGA VI by selecting File»Save or pressing CTRL+S.

LabVIEW RIO Evaluation Kit - 36 - ni.com/rioeval/nextstep

Start LabVIEW FPGA Compilation Process

1. Save the FPGA VI and click the Run button to start the compilation process.

Note: In contrast to LabVIEW applications running on a Windows OS, an FPGA-based VI is

compiled down to a bitfile, which is loaded onto the FPGA chip configuring its logic cells and

I/O blocks to implement the requested logic. This is a two-step process. First LabVIEW

generates intermediate files and then it transfers them to the Xilinx compilation tools for the

final compile stage.

2. In this case, select Use the local compile server option. The FPGA compilation process

can also be offloaded onto a remote machine, farm servers, or to the cloud.

3. The intermediate file generation process will then start, and once complete, will kick off

the Xilinx compilation. In total, the process should take about 20 minutes to finish

compilation.

LabVIEW RIO Evaluation Kit - 37 - ni.com/rioeval/nextstep

Note: If a communication error occurs when the Compile Server starts, manually start the

Compile Worker by navigating in the Windows start menu to All Programs»National

Instruments»FPGA»FPGA Compile Worker. Then, once it starts up, click the Run button on

your LabVIEW FPGA VI again to re-establish communication.

You have now finished development of a LabVIEW FPGA application to

monitor and control the prototype battery cell, motor, and attached display!

Learn more about FPGA Fundamentals at ni.com/fpga

Next Step
While you are waiting for your FPGA application to compile, continue on to

the development of your real-time application in Exercise 3.

http://www.ni.com/fpga/

LabVIEW RIO Evaluation Kit - 38 - ni.com/rioeval/nextstep

Exercise 3 | Develop Real-Time Application

Summary
In this exercise you are going create a real-time application running on a processor which

communicates with the FPGA controlling the LCD screen. It will also acquire data captured by

the FPGA from the I/O and coordinate network communication back to your Windows user

interface.

1. Communicate with the FPGA

2. Forward Data onto the Windows Target

3. Implement Decision Logic for LCD Screen

4. (Optional) Test the Real-Time and FPGA Applications

LabVIEW RIO Evaluation Kit - 39 - ni.com/rioeval/nextstep

What am I going to accomplish in this exercise?

In this exercise you will complete two processes running on the real-time microprocessor. The

first one will transfer the values from the FPGA and then forward them on to the Windows user

interface through network communication. The second process, LCD Control, will decide what

to write down to the LCD screen based on push button presses.

LabVIEW RIO Evaluation Kit - 40 - ni.com/rioeval/nextstep

Project Setup

1. With your Exercise 2 project still open in the Project Explorer Window, select File»Save
As… to copy the project files into the Exercise 3 folder.

2. In the Save As… dialog box that appears select Duplicate .lvproj file and contents »
Select contents to copy and click Continue…

3. Uncheck the Dependencies category for the FPGA target hierarchy and select OK.
These LabVIEW dependency files are not necessary since you will still be saving the
files on the development machine.

4. Navigate to the .\3- Create Real-Time Application\ folder and rename your project as
Exercise 3- RT.lvproj. Click OK to save the project and supporting files.

Note: Click OK if asked to save over existing files

5. Leave the Exercise 2 project open so that the FPGA VI can compile and open the
Exercise 3- RT.lvproj from .\3- Create Real-Time Application\ that was just created.

LabVIEW RIO Evaluation Kit - 41 - ni.com/rioeval/nextstep

6. In the Project Explorer window, right-click on NI-RIO Evaluation HW and select
Add»File… to add the RT application starting template, Navigate to the .\3- Create Real-
Time Application\VIs folder and select the RT Microprocessor.vi.

7. To include the network published shared variables used to communicate with the
Windows UI, right-click on NI-RIO Evaluation HW and select Add»File… Navigate to the
.\3- Create Real-Time Application\ folder and select RT-Host Shared Variables.lvlib.

8. Right-click again on NI-RIO Evaluation HW and select Add»Folder (Snapshot)… Navigate
into the .\3- Create Real-Time Application\Custom Controls folder and select Current
Folder.

9. Select the Custom Controls folder that was just added to the project, press F2, and
rename it RT Custom Controls.

LabVIEW RIO Evaluation Kit - 42 - ni.com/rioeval/nextstep

Communicate with the FPGA
In this section you will open a reference to the FPGA target, implement communication with

the target across the backplane bus and close the reference.

1. Open up the RT Microprocessor VI from the project and toggle to the block diagram
(press CTRL+E).

LabVIEW RIO Evaluation Kit - 43 - ni.com/rioeval/nextstep

2. Navigate to the FPGA Interface palette and pin it to the block diagram. From this palette
insert an Open FPGA VI Reference (Functions»FPGA Interface»Open FPGA VI
Reference) on the block diagram as shown below.

3. From the project find the FPGA VI under Chassis»FPGA Target. Drag it into the
unconfigured Open FPGA VI Reference to the left of the top while loop.

Note: The Run Arrow will be broken because the FPGA VI that you copied over to the project is
not yet compiled. In testing you will reference the compiled bitfile from Exercise 2.

4. Insert two Invoke Method nodes (Functions»FPGA Interface) on the block diagram

between the Open FPGA VI Reference and the while loop to reset and load the FPGA
application.

5. Wire the FPGA Target reference out of the Open FPGA VI Reference to the first Invoke
Method, and then click on the white section titled Method and select Reset.

LabVIEW RIO Evaluation Kit - 44 - ni.com/rioeval/nextstep

6. Wire the FPGA VI reference output of the first Invoke Method into the input of the

second Invoke Method and select Run as the method for the second Invoke Method.

7. Next wire the FPGA reference output of the Run Invoke Method to the border of the

FPGA Variable Output while loop

8. Right-click on the Wait Until Done input of the Run Invoke Method and select

Create»Constant. This should be a False constant by default.

9. Complete the error and FPGA reference wires as shown below.

10. Now insert a Read/Write Control (Functions»FPGA Interface»Read/Write Control) inside

the FPGA Variable Output while loop. This will define the data communicated between

the FPGA and real-time application.

11. Wire the FPGA reference from the loop’s tunnel to the Read/Write Control input along

with the error wire.

12. Expand the Read/Write Control to include six terminals by clicking on the lower border

and dragging it down as shown below.

LabVIEW RIO Evaluation Kit - 45 - ni.com/rioeval/nextstep

13. To configure the unselected terminals, left-click on each of them and select the control

or indicator name from the FPGA front panel that should be polled. Configure the

terminals as shown below to include Max Temp, RPM, Voltage, Temp, Temp Warning,

and Battery State.

14. Without setting timing in the while loop it will execute as fast as it can, potentially

starving resources allocated to the other loop. To avoid this insert a Wait Until Next ms

Multiple (Functions»Programming»Timing) function inside the loop. Right-click on its

millisecond multiple input and select Create»Constant.

Enter a value of 100 in the constant to execute the loop every 100 milliseconds.

15. By default the Read/Write Control terminals should all be inputs. Right-click on terminals

2-6 and select Change to Read to change them to outputs.

16. Wire the terminals on the Read/Write Control to the matching front panel control and

indicators on the real-time application VI.

LabVIEW RIO Evaluation Kit - 46 - ni.com/rioeval/nextstep

17. Finally, to close out the reference to the FPGA target, insert a Close FPGA VI Reference

function (Functions»FPGA Interface) to the right of the FPGA Variable Output while loop

and wire up the FPGA VI reference as shown.

18. Save the Real-Time VI by selecting File»Save or pressing CTRL+S.

LabVIEW RIO Evaluation Kit - 47 - ni.com/rioeval/nextstep

Forward Data onto the Windows Target
Next you will send the data collected from the FPGA and publish it across the Ethernet connect

so that it will be accessible to the Windows user interface that you will develop in the next

exercise.

1. Inside the project under the NI-RIO Evaluation HW target, locate the RT-Host Shared

Variables.lvlib. This library contains the Network Published Shared Variables that have

been created for communication.

2. Expand the library (.lvlib) to show the Network Published Shared Variables. Drag an

instance of each variable, excluding Display State and Stop, into the block diagram.

LabVIEW RIO Evaluation Kit - 48 - ni.com/rioeval/nextstep

3. By default the shared variable static nodes are in read mode; change the variables to

write by selecting one of them, right-clicking, and going to Access Mode»Write. Change

all the shared variables to be write access mode.

4. Create a wire branch from the FPGA Read/Write control outputs and wire to their

respective shared variables as shown in the next screenshot.

5. In order to enforce dataflow and ensure correct error propagation, wire the error out

from the FPGA Read/Write Control through each of the Shared Variable static nodes, in

any order.

LabVIEW RIO Evaluation Kit - 49 - ni.com/rioeval/nextstep

6. Inside the project under the NI-RIO Evaluation HW target, locate the Stop shared

variable inside the RT-Host Shared Variables.lvlib. Drag this variable onto the block

diagram and insert it to the right of the existing shared variables, as shown below.

7. Insert an Or logic function (Functions»Programming»Boolean) to the right of the Stop

shared variable. Wire the Error line and Boolean output of the Stop shared variable into

the Or input terminals and the Boolean output of the Or terminal into the red Conditional

Terminal as highlighted in red below. This will stop the loop if either the Stop shared

variable is true or there is an error.

8. Save the Real-Time VI by selecting File»Save or pressing CTRL+S.

LabVIEW RIO Evaluation Kit - 50 - ni.com/rioeval/nextstep

Implement Decision Logic for LCD Screen
The second process, LCD Control, will decide what to write to the LCD screen based on push

button presses. You will implement the logic in the next section to control this behavior.

1. To begin, navigate on the Functions palette to the Hitachi HD44780 LCD screen API

(Functions»Connectivity»LCD» Hitachi HD44780) and insert the following functions:

Initialize HD44780.vi

Clear Display.vi (in the Advanced palette)

Two Output.vi

Close.vi

LabVIEW RIO Evaluation Kit - 51 - ni.com/rioeval/nextstep

2. Now insert a Read/Write Control (Functions»FPGA Interface) inside the LCD Display

Update Characters while loop. This will be used to receive the push button display

command from the FPGA to decide which string to write to the LCD screen.

3. Branch the FPGA VI Reference wire from after the Run Method next to the top while

loop and wire it to the Read/Write Control inserted in the previous step. Also wire it to

the FPGA VI Reference in input of the Initialize HD44780 VI.

4. To configure the unselected terminal of the Read/Write Control, left-click on it and

select the name of the control or indicator from the FPGA front panel that should be

polled. In this case select the FPGA Display Command.

LabVIEW RIO Evaluation Kit - 52 - ni.com/rioeval/nextstep

5. By default the terminal should be an input. Right-click on the FPGA Display Command

terminal and select Change to Read to change it to an output.

6. Wire the FPGA Display Command output to the case selector of the nearby case

structure to select the appropriate text to display on the LCD screen. The logic in the

case structure polls the chosen shared variable for the most recent value and generates

the value and name string to write to the LCD screen.

7. To propagate any errors through both loops appropriately, wire the Error line through the

Initialize HD44780 VI and through both while loops as shown below.

LabVIEW RIO Evaluation Kit - 53 - ni.com/rioeval/nextstep

8. Now focusing on the LCD screen write execution, locate the Initialize HD44780 VI to

the left of the bottom while loop on the block diagram.

 Right-click on its Device Index input and select Create»Constant.

 Repeat for the Screen Size and Font Configuration inputs.

 Set these constants to the following values:

Device Index: 0

Screen Size: 8x2

Font Configuration: 5x8 & 2 lines

9. Wire the LCD out reference of the Initialize HD44780 VI to the LCD in of the Clear

Display VI. Wire the LCD out of the Clear Display to the LCD in of the Output VI.

Continue this wiring to carry the reference through to the Close VI.

10. Next add network published shared variables to the LCD Display Update Characters

while loop to communicate the current LCD display state to the Windows User

Interface.

Inside the LabVIEW project under the NI-RIO Evaluation HW target, locate the Display

State and Stop shared variables inside the RT-Host Shared Variables.lvlib. Drag these

variables into the LCD Display Update Characters while loop and insert them to the right

of the case structure.

11. By default the shared variable static nodes are in read mode; change the Display State

variable to write by selecting it, right-clicking, and choosing Access Mode»Write.

LabVIEW RIO Evaluation Kit - 54 - ni.com/rioeval/nextstep

12. To control what is written to the LCD screen, wire the pink string values from the edge

of the case structure to the text input terminals on each respective Output VI as shown

below.

13. Right-click on the position input terminal on each Output VI and select Create»Constant.

This is a cluster constant with two elements, row and column. Leave the first constant

as default [0,0] and change the second Output VI cluster constant to [1,0] as shown

below.

14. Create a branch off the FPGA Display Command output and wire to the Display State

shared variable along with the error line from the second Output VI as shown below.

15. Insert an Or logic function (Functions»Programming»Boolean) to the right of the Stop

shared variable. Wire the Error lines and output of the Stop shared variable as

highlighted in red below, similar to what you did in the FPGA Variable Output loop.

LabVIEW RIO Evaluation Kit - 55 - ni.com/rioeval/nextstep

16. Without setting timing in the while loop it will execute as fast as it can, potentially

starving resources allocated to the other loop. To avoid this insert a Wait Until Next ms

Multiple (Functions»Programming»Timing) function. Right-click on its millisecond

multiple input and select Create»Constant.

Enter a value of 100 in the constant to execute the loop every 100 milliseconds.

17. Inside the project under the NI-RIO Evaluation HW target, locate the Stop shared

variable inside the RT-Host Shared Variables.lvlib. Drag an instance of this variable into

the block diagram to the left of the Open FPGA VI Reference VI and one to the left of

the Close FPGA VI Reference VI.

18. Change the Stop variables to write mode by selecting them, right-clicking, and going to

Access Mode»Write.

19. Right-click on the Stop input terminal of both shared variables and select

Create»Constant. Leave the constant as the default False value.

20. Wire the error line from the error out terminal of both Stop shared variables to the error

in terminal of the Open FPGA VI Reference VI and Close FPGA VI Reference VI to

enforce dataflow and ensure that initializing the Stop shared variable to False executes

before those VIs every time you run the program.

LabVIEW RIO Evaluation Kit - 56 - ni.com/rioeval/nextstep

21. To finish the error propagation to the right of both while loops, wire the error lines as

shown below into a Merge Error VI (Functions»Programming»Dialog and User Interface)

before wiring to the error in terminal on the Stop shared variable.

22. Right-click on the left-hand error tunnel on the while loop and select Replace with Shift

Register from the drop down menu. LabVIEW replaces the tunnel you right-clicked with

a shift register terminal, and the cursor becomes a shift register icon (). Hover over

the error tunnel on the opposite side of the loop until it flashes, then click the tunnel to

replace it with a shift register. A shift register enables the passing of data from one loop

iteration to the next.

23. Repeat this step to turn the LCD Driver Reference loop tunnels to shift registers.

24. Right-click on the error out terminal of the Close FPGA VI Reference VI and select

Create»Indicator to display any errors to the user on the front panel.

25. Save the Real-Time VI by selecting File»Save or pressing CTRL+S.

LabVIEW RIO Evaluation Kit - 57 - ni.com/rioeval/nextstep

(Optional) Test the Real-Time and FPGA Applications
At this point the FPGA VI should have completed its compilation process and now you can run

the following tests on the FPGA and Real-Time target applications.

(Optional) FPGA Application Test

1. Bring up the Exercise 2-FPGA project that should still be open in the background and

double click on the FPGA.vi if it is not already open.

Note: If you did not complete the Exercise 2 FPGA application, reference the solution at . \2-

Create FPGA Application_Solution and open the Exercise 2-FPGA.lvproj. The solution VI will

need to be compiled for your specific target. Reference the Using the Solutions section on

Page 9 for more details on using the solution.

2. Click the run button if it is not already running and complete the following tests:

 Turn the potentiometer in the lower right-hand corner of the board and verify

that on the FPGA front panel that the battery cell voltage indicator, called

Voltage, increases and the Battery State indicator also changes. Also note the

changes in the board LEDs representing the different digital signals that would

be sent to the power distribution circuit based on the battery state (Low Batt,

Running, and Charged).

LabVIEW RIO Evaluation Kit - 58 - ni.com/rioeval/nextstep

 Turn the potentiometer pictured below to vary the Motor PWM signal frequency

and verify that the RPM signal responds accordingly on the FPGA front panel.

 Put your finger on the temp sensor shown below and verify that the Temp signal

responds accordingly on the FPGA front panel. Reduce or increase the Max

Temp so that you can test the Temp Warning and ensure that if the temp is

above the maximum that the Temp Warning front panel alarm LED is on. Also

verify that the on board LED turns on providing notice to the operator of an

alarm.

LabVIEW RIO Evaluation Kit - 59 - ni.com/rioeval/nextstep

 The final FPGA test is to verify the push button inputs. Assert each of the four

outer push buttons (PB1, PB2, PB4, and PB5) and verify that the FPGA Display

Commands update with a new menu item.

Note: Since the real-time application creates and controls the LCD screen, it will

not yet work. The next testing section for the real-time application will exercise

this functionality.

3. When you are finished testing the FPGA VI, click the Abort button .

4. Right-click on the NI-RIO Evaluation HW target in the LabVIEW project and select

Disconnect. Note the bright green Boolean turns off, indicating the target is

disconnected. Finally, close out all of the Exercise 2 LabVIEW files and save the files if

prompted.

Congratulations, you have completed your FPGA application testing!

As you can see, the FPGA VI front panel is very helpful for debugging

purposes.

LabVIEW RIO Evaluation Kit - 60 - ni.com/rioeval/nextstep

(Optional) Real-Time Application Test

Initial Setup

1. Transition back to the Exercise 3-RT project to test the real-time application. Open up

the RT Microprocessor VI if it is not already in memory.

2. Since the FPGA VI was compiled in a different project, the static FPGA compiled

application, or bitfile, needs to be referenced in the current project. Toggle to the block

diagram (CTRL+E), right-click on the FPGA Open VI Reference VI and select Configure

FPGA Open VI Reference…

3. In the dialog that appears click the radio button next to Bitfile and browse to .\2- Create

FPGA Application\FPGA Bitfiles\ and select the file inside. Click OK on the dialog to exit.

Note: This is the bitfile that is a result of your Exercise 2 LabVIEW FPGA code compilation.

4. To finish the FPGA setup, right-click on the resource name input terminal on the FPGA

Open VI Reference and select Create»Constant. From the constant drop down select

RIO0. This is the name of your FPGA target resource from the LabVIEW Project.

LabVIEW RIO Evaluation Kit - 61 - ni.com/rioeval/nextstep

Application Testing

1. Click the Run button to compile and deploy the real-time application to the NI-RIO

Evaluation Device, which also includes the FPGA application since the VI references the

FPGA bitfile you just selected. Save the VI if prompted.

Note: If a Conflict Resolution dialog box appears on deployment click Apply to overwrite the

current real-time application that is still running on the device.

2. For the real-time application testing, run the same tests as you did for the FPGA except

now look to the Real-Time application front panel for verification of values.

3. Also note that the LCD screen now displays the different menus that the real-time

application generates and transfers to the FPGA.

4. When you are finished testing the real-time VI, click the Abort button.

5. Right-click on the NI-RIO Evaluation HW target in the LabVIEW project and select

Disconnect.

6. Save all of the Exercise 3 files by selecting File»Save All in the Project Explorer window.

You have now created a real-time application running on a microprocessor

which acquires data from the FPGA, controls the LCD screen, and

coordinates network communication with the Windows user interface!

LabVIEW RIO Evaluation Kit - 62 - ni.com/rioeval/nextstep

Exercise 4 | Create Windows User Interface

Summary
In this exercise you will complete your battery monitoring application using the FPGA VI that

you created in Exercise 2 and the Real-Time VI you created in Exercise 3. You will modify the

Windows User Interface VI to read data from the network published shared variables that you

wrote data to in the Real-Time application in Exercise 3. Then you will finish by wiring this data

to the User Interface components to display the current battery management system data. In

this exercise, you will complete the following tasks:

1. Explore the Windows-Based Application User Interface

2. Finish Development of the Windows-Based Application User Interface

3. Run and Verify the Completed System

LabVIEW RIO Evaluation Kit - 63 - ni.com/rioeval/nextstep

What am I going to accomplish in this exercise?

In this exercise you will finish the overall embedded system by completing a user interface

running on your Windows development machine. The user interface components have already

been placed for you, but the backend communication architecture needs to be completed so

that you can update the user interface with current values and the state of the battery and

motor.

LabVIEW RIO Evaluation Kit - 64 - ni.com/rioeval/nextstep

Project Setup

1. With your Exercise 3 project still open in the Project Explorer Window, select File»Save
As… to copy the project files into the Exercise 4 folder.

2. In the Save As… dialog box that appears select Duplicate .lvproj file and contents »
Select contents to copy and click Continue…

3. Uncheck the Dependencies category for the Real-time and FPGA target hierarchies and
select OK. These LabVIEW dependency files are not necessary since you will still be
saving the files on the development machine.

4. Navigate to the …\4- Create Windows UI\ folder and rename your project as Exercise 4-
Windows UI.lvproj.

5. Click OK to save the project and supporting files. If a Load Warning occurs click Ignore
as it is confirming the new file locations.

6. Close the Exercise 3 project and open the Exercise 4- Windows UI.lvproj from
.\4- Create Windows UI\ that was just created. If prompted save the Exercise 3 project.

7. To add the skeleton Windows UI application already created, in the Project Explorer
window right-click on My Computer and select Add»File… Navigate to the
.\4- Create Windows UI\VIs folder and select Windows UI.vi.

LabVIEW RIO Evaluation Kit - 65 - ni.com/rioeval/nextstep

8. Right-click on My Computer and select Add»Folder (Snapshot)… Navigate to the .\4-
Create Windows UI\ VIs\Windows SubVIs folder and select Current Folder.

9. Right-click on My Computer and select Add»Folder (Snapshot)… Navigate to the .\4-
Create Windows UI\ Custom Controls folder and select Current Folder. Select the
Custom Controls folder that was just added to the project, press F2, and rename it
Windows Custom Controls.

The My Computer section of your project should now look as follows:

LabVIEW RIO Evaluation Kit - 66 - ni.com/rioeval/nextstep

Explore the Windows-Based Application User Interface

In this section you will explore the Windows PC User Interface application and its interaction

with real-time processor application.

1. In the Exercise 4- Windows UI Project Explorer window, double click to open Windows

UI.vi to view the User Interface. Note there are indicators for each of the values you’ve

been monitoring on the Real-Time front panel thus far:

 Current Voltage, Temperature, and RPM, as well a variable history of these three

values.

 Temperature Warning alarm Boolean indicator

 Along the bottom are LCD indicators to display the current LCD screen state

2. On the user interface, update the IP Address string control value to the IP address of

your NI-RIO Evaluation Device.

3. To set this IP address as the default on start up, select Edit»Make Current Values

Default after entering the IP address.

LabVIEW RIO Evaluation Kit - 67 - ni.com/rioeval/nextstep

4. Save the VI by going to File»Save or pressing CTRL+S.

5. Press CTRL+E to view the block diagram logic. To the left of the while loop the IP

address of the NI-RIO Evaluation Device is collected with the IP Address string control

on the front panel and a connection to its shared variable engine, hosted on the

microprocessor, is established with the Initialize Shared Variables Host.vi. This VI takes

an IP address and builds references to all the shared variables used on the host, in this

case, your NI-RIO Evaluation Device. Those references are bundled in a cluster to easily

transmit the data in one wire.

6. Inside the UI Update and Event Handler while loop, observe the Timeout case of the

event structure. The LabVIEW Event Structure executes when a defined event is

detected, in this case, if no event is detected within 10 ms, the timeout case is

executed. This timeout case:

 Reads the network published shared variables that were written to in the real-

time application with the Read Shared Variables Host.vi.

 Contains all of the mapping to connect the user interface components to data

from the shared variables so that those components update with the most

recent values. You will complete this wiring in the next section.

7. Now toggle the event structure to the “Stop Button”: Value Change case by clicking the

arrow next to the Timeout case text.

LabVIEW RIO Evaluation Kit - 68 - ni.com/rioeval/nextstep

8. Note that the user interface Stop Button Boolean control is located inside this event

case, and the case will execute when the user interface detects a value change (push)

of the Stop Button. In the next section you will add the Stop network published shared

variable to communicate the stop condition to the real-time processor target.

9. Finally, to the right of the while loop the shared variable connections are closed before

errors are checked the application exits.

LabVIEW RIO Evaluation Kit - 69 - ni.com/rioeval/nextstep

Finish Development of the Windows-Based Application User Interface
In the last section you will complete the Windows User Interface application by connecting the

block diagram logic to front panel controls/indicators and insert the Stop shared variable for

communication of the stop condition to the NI-RIO Evaluation Device.

1. In the UI Update and Event Handler loop the shared variables that are read need to be

unbundled for connection to their respective front panel indicators.

 In the Timeout event case, insert an Unbundle By Name function

(Functions»Programming»Cluster, Class, & Variant) to the right of the Read

Shared Variables Host VI.

 Wire the Current Values output of the Read Shared Variables Host VI to the input

of the Unbundle By Name function. This unbundles each of the six shared

variable values that were contained in the cluster.

 Expand the values to unbundle by left-clicking to select the Unbundle By Name

function and drag out the blue lower boundary until six terminals are exposed.

LabVIEW RIO Evaluation Kit - 70 - ni.com/rioeval/nextstep

 Left-click on each terminal and select the shared variable name that matches the

order in the screenshot below.

 Wire the output terminals to the matching front panel indicators.

2. Add a Bundle function and wire it up as shown to group Voltage, RPM, and

Temperature values for input into the Variable History chart.

 Insert the Bundle function (Functions»Programming»Cluster, Class, & Variant)

 Expand the terminals to three by selecting the Bundle and extending the lower

border.

 Create a branch from the existing wires and connect Voltage to the top terminal,

Temperature to the middle terminal, and RPM to the lower terminal.

 Wire the output of the Bundle function into the input of the Variable History

Waveform Chart indicator.

3. Switch the event structure to the “Stop Button”: Value Change case by clicking the

arrow next to the Timeout case text.

4. Inside the project under the NI-RIO Evaluation HW target, locate the Stop shared

variable inside the RT-Host Shared Variables.lvlib. Drag this variable into the block

diagram and insert it into the current event case to communicate the stop condition to

the NI-RIO Evaluation Device.

LabVIEW RIO Evaluation Kit - 71 - ni.com/rioeval/nextstep

5. Change the Stop shared variable to write by selecting it, right-clicking, and going to

Access Mode»Write.

6. Branch the wire from the Stop Button terminal and connect it to the Stop input of the

Stop shared variable. Wire the error line from the left tunnel to the shared variable error

in terminal and wire the error out to the right-hand tunnel.

7. Save the Windows UI VI by going to File»Save or pressing CTRL+S.

LabVIEW RIO Evaluation Kit - 72 - ni.com/rioeval/nextstep

Run and Verify the Completed System
Now that you have completed the development of your system, run through these steps to

verify its behavior.

1. Open and run the RT Microprocessor VI from the Exercise 4- Windows UI project. If you

have a broken Run arrow refer to the note below.

Note: If you did not complete the optional real-time application testing at the end of Exercise 3,

go to page 60 and complete the Initial Setup section of the real-time application to link to the

FPGA application bitfile.

Note: If a Conflict Resolution dialog box appears on deployment click Apply to overwrite the

current real-time application that is still running on the device.

2. Open and run the Windows UI VI from the Exercise 4- Windows UI project.

Note: If the Windows application throws an error or does not respond, verify that the correct IP

address for your NI-RIO Evaluation Device is entered on the user interface. If it is not, re-enter

it, select Edit»Make Current Values Default, and click the Run button to restart the Windows

application.

3. On the daughter card push PB4 to display the voltage on the LCD screen and turn the

potentiometer.

 Verify that the battery voltage changes on the Windows User Interface and on

the LCD screen accordingly.

 Note the battery state as you change it from Low Batt, to Running, to Charged

and the corresponding LEDs that turn on like a gauge.

4. On the daughter card push PB2 to display the motor RPM on the LCD screen.

 Turn the frequency potentiometer for the function generator and verify that the

RPM value changes on the Windows User Interface and on the LCD screen

accordingly.

LabVIEW RIO Evaluation Kit - 73 - ni.com/rioeval/nextstep

5. Once you are done testing, click Stop on the Windows UI to stop both applications.

6. When you are finished testing the system, right-click on the NI-RIO Evaluation HW

target in the LabVIEW project and select Disconnect. Note the bright green Boolean

turns off, indicating the target is disconnected.

Congratulations, you have finished the development of your LabVIEW RIO-

based embedded system!

Next Step

Deploy and Replicate Your Embedded System

LabVIEW RIO Evaluation Kit - 74 - ni.com/rioeval/nextstep

Exercise 5 | Application Deployment and Replication

Summary
Now that you have completed the development of your embedded system, you need to deploy

and replicate the application. In this exercise you will complete these two tasks:

1. Create and Deploy a Startup Real-Time Executable

2. Save a System Software Image and Deploy to Formatted Hardware

Project Setup

1. With your Exercise 4 project still open in the Project Explorer Window, select File»Save

As… to copy the project files into the Exercise 5 folder.

2. In the Save As… dialog box that appears select Duplicate .lvproj file and contents »

Select contents to copy and click Continue…

3. Uncheck the Dependencies category for each of the My Computer, Real-Time

Processor, and FPGA target hierarchies and select OK. These LabVIEW dependency

files are not necessary since you will still be saving the files on the development

machine.

4. Navigate to the …\5- DeployReplicate System folder and rename your project as

Exercise 5- Deploy Replicate.lvproj. Click OK to save the project and supporting files.

5. Close the Exercise 4 project and open the Exercise 5- Deploy Replicate.lvproj from

.\5- DeployReplicate System\ that was just created. Save Exercise 4 files if prompted.

LabVIEW RIO Evaluation Kit - 75 - ni.com/rioeval/nextstep

Create and Deploy a Startup Real-Time Executable

Create an executable for your Windows User Interface application

1. In the LabVIEW Project Explorer window expand out the My Computer target, right-click

on the Build Specification, and select New»Application (EXE).

2. An Application Builder Information dialog window may open upon building an application

for the first time. Check the Do not prompt again for this operation box and click OK.

3. Once the My Application Properties dialog window appears, enter the Build

Specification name and Target filename as Exercise 5 Windows Application and the

Destination directory as .\5- DeployReplicate System\builds\ Windows Application.

4. In the Category list on the left-hand side of the window, click on Source Files and select

Windows UI.vi from the Project Files section. Add the VI as the Startup VI by clicking

the right arrow. This designates the VI to build into an executable and its User Interface

that will appear when running the executable.

5. Leave the remainder of the categories as defaults and click Build. Once the build is

successful click Done.

LabVIEW RIO Evaluation Kit - 76 - ni.com/rioeval/nextstep

Create an executable for your real-time application

6. In the LabVIEW Project Explorer window expand out the NI-RIO Evaluation HW target,

right-click on the bottom Build Specification, and select New»Real-Time Application.

7. In the dialog window, enter the Build specification name as Exercise 5 RT Application.

8. Set the Local destination directory as .\5- DeployReplicate System\builds\ RT

Application.

9. In the Category list on the left-hand side of the window, click on Source Files and select

RT Microprocessor.vi from the Project Files section and add the VI as the Startup VI by

clicking the right arrow.

10. Leave the remainder of the categories as defaults and click Build. Once the build is

successful click Done.

LabVIEW RIO Evaluation Kit - 77 - ni.com/rioeval/nextstep

Set the real-time executable as a startup application so you do not need to manually

deploy it to the target every time you reboot the system.

11. In the LabVIEW Project Explorer window, right-click on the Exercise 5 RT Application

build specification that you created and select Run as startup.

Note: If a Conflict Resolution dialog box appears on deployment click Apply to overwrite the

current real-time application that is still running on the device.

12. LabVIEW will deploy the application to the target hard drive and then will prompt you to

reboot the target to start executing the startup application. Click Yes to continue with

the reboot.

Note: Allow for a few minutes for the Real-Time Operating System (RTOS) to boot up after

reboot. Once it does successfully reboot the LCD screen will start updating.

13. Navigate to and run on the Windows executable that you built, located at .\5-

DeployReplicate System\builds\Windows Application\Exercise 5 Windows

Application.exe

Verify that the initial deployment of the system works by running through the system

tests from the Run and Verify the Completed System section of Exercise 4 on page 72.

It should now execute, communicate with the headless real-time application, and

update the LCD screen.

14. Close all LabVIEW files and save if prompted.

LabVIEW RIO Evaluation Kit - 78 - ni.com/rioeval/nextstep

Save a System Software Image and Deploy to Formatted Hardware

Warning

This section re-formats the hard drive on your NI-RIO Evaluation Device. If for some

unexpected reason after 5 minutes or more the device does not respond, you can reset the

device to a known state by re-running the LabVIEW RIO Evaluation Setup Wizard (Windows

Start Menu»All Programs»National Instruments»LabVIEW RIO Evaluation Kit»Setup Utility).

1. National Instruments provides a utility to rapidly create and deploy hardware images of

your application. The utility is called the Replication and Deployment (RAD) Utility and

can be downloaded and installed from the following location on ni.com:

Replication and Deployment (RAD) Utility

and download rad_3002_installer.zip

2. Once you have downloaded the RAD Utility from the above location run the installer.

3. Navigate to and open the NI Replication and Deployment (RAD) Utility from Windows

Start Menu»All Programs»NI Replication And Deployment»RAD Utility.

4. When the RAD utility opens, it will scan for systems on the network and will populate

your target in the left-hand table. If you are connected to a router and there are other

targets on the network, they will appear as well. Select the NI-sbRIO9636-<Your Device

serial number and IP address> target and click Retrieve to retrieve an image.

http://zone.ni.com/devzone/cda/epd/p/id/5986

LabVIEW RIO Evaluation Kit - 79 - ni.com/rioeval/nextstep

5. A Select Image Type dialog box will appear. Select New Application Image, enter the

name LabVIEW RIO Evaluation Image, and click OK.

6. Choose the image storage directory by browsing to the folder .\5- DeployReplicate

System\images. Click Retrieve Image from NI-sbRIO-<Your Device serial number and IP

address> to start saving the target’s image.

LabVIEW RIO Evaluation Kit - 80 - ni.com/rioeval/nextstep

7. The retrieval and image processing will take about 5 minutes. When you receive the

dialog box that the application image retrieval was successful, click OK.

8. Once the image has been successfully copied to your development computer, you will

now format the NI-RIO Evaluation Device to simulate how you would go about

deploying this image to a new system.

To format the target, launch the Measurement & Automation Explorer (NI MAX), located

on your Windows Desktop or at (Start»All Programs»National Instruments»NI MAX).

9. Expand Remote Systems in the left-hand navigation window to expose your target.

Right-click on your target (it may be named NI-sbRIO-<Your Device serial number and IP

address>) and select Format Disk.

LabVIEW RIO Evaluation Kit - 81 - ni.com/rioeval/nextstep

10. Check the boxes to Force safe mode and to Keep network settings, then click Format.

Note: If after clicking Format Measurement & Automation Explorer displays the following

warning dialog:

Then navigate to the Controller Settings tab for the NI-RIO Evaluation Device (shown below),

check the box next to Safe Mode to force the device into safe mode and click Save. When

prompted to restart, click Yes and wait for the device to reboot before retrying steps 8-10.

LabVIEW RIO Evaluation Kit - 82 - ni.com/rioeval/nextstep

11. Once you have successfully formatted the device the following dialog window will

appear.

Note: The reboot will take about a minute to complete.

12. Click OK and then go back into the RAD Utility.

13. In the utility click Refresh to force the application to rescan the network and update the

target information.

14. Since you have not specified your exercise folder as the default place to scan for images

there are no image files showing up in the Application Images table. To change the

location where the RAD scans:

 Click on Settings in the upper left corner above the Application Images table

 Browse to .\5- DeployReplicate System\images and select Use Current Folder

 Click OK

15. Select your target on the left and the image on the right and then click Deploy. Verify in

the dialog window that appears that the target is listed and then click Deploy Application

Image to Listed Targets to start the replication process.

Note: The imaging process will take about 5 minutes.

LabVIEW RIO Evaluation Kit - 83 - ni.com/rioeval/nextstep

16. After the replication is complete, the LCD screen will start updating again with your I/O,

signaling the startup application is running. At this point close the dialog window.

Note: If you put the device into Safe Mode before, follow these steps to disable it now:

 Navigate to the Controller Settings tab for the NI-RIO Evaluation Device (shown

below) in Measurement & Automation Explorer (NI MAX).

 Uncheck the box next to Safe Mode to reboot the target out of safe mode and click

Save.

 When prompted to restart click Yes.

 Wait for the device to reboot and then move on to the next step.

17. To verify that the target has successfully been replicated, re-run your Windows

application (.\5- DeployReplicate System\builds\Windows Application\Exercise 5

Windows Application.exe) and you should receive updates from the embedded system.

Congratulations! Using NI’s graphical system design approach, you have now

completed the development, deployment, and replication of a LabVIEW RIO-based

embedded system with three targets (Desktop PC running Windows OS, Processor

running a Real-Time OS, and an FPGA).

LabVIEW RIO Evaluation Kit - 84 - ni.com/rioeval/nextstep

Next Steps
This evaluation tutorial was an introduction to the LabVIEW RIO Architecture. Before

you purchase NI LabVIEW and a RIO hardware device to start programming for your

application, please review the following:

1. LabVIEW RIO Architecture Training Path

Since this was a brief introduction to the LabVIEW Real-Time and LabVIEW

FPGA modules it is highly recommended that you better understand what

further knowledge you need to gain before you start creating your own system.

Appendix A has a guide to help you identify a training path to gain the

appropriate skill level for the task you are trying to complete using LabVIEW.

2. RIO Hardware Form Factors

In this evaluation kit you used a board-level form factor of the RIO hardware

platform. This however is just one form factor of many different families of RIO

hardware products that can all be similarly programmed with the LabVIEW FPGA

and LabVIEW Real-Time modules.

Learn more about the other families by visiting ni.com/embeddedsystems.

3. Online Community with Further Exercises and Resources

To find getting started resources, more advanced tutorials specifically for the

LabVIEW RIO Evaluation Kit, user applications, discussion forums, and to learn

more about LabVIEW RIO Architecture products, visit ni.com/rioeval/nextstep.

http://www.ni.com/embeddedsystems/
https://decibel.ni.com/content/groups/labview-rio-evaluation-kit

LabVIEW RIO Evaluation Kit - 85 - ni.com/rioeval/nextstep

Appendix A | LabVIEW RIO Training Path

Maximize Your RIO Investment

Develop Faster and Reduce Maintenance Costs

For developing embedded control and monitoring systems, the combination of NI LabVIEW

software and NI CompactRIO or NI Single-Board RIO hardware offers powerful benefits

including the following:

 Precision and accuracy - Precise, high-speed timing and control combined with accurate

measurements

 Flexibility – Hundreds of I/O modules for sensors, actuators and networks that with

LabVIEW can connect quickly to control and processing algorithms and system models

 Productivity – LabVIEW system design software for programming processors, FPGAs,

I/O and communications

 Quality & ruggedness – High-quality hardware and software for deploying reliable

embedded systems that last

However, there is still a learning curve to effectively take advantage of these benefits, and

your application or job in part determines the size of that curve. Every project is different. To be

successful, you should determine up front what you need to learn to deliver a system that

meets or exceeds requirements while also minimizing development time. If the requirements

for your next project differ significantly from your current one, assess what additional concepts

you should learn to successfully complete it. For example, you may be currently developing a

functional prototype and just want a system that works, but if the design is approved you will

likely want something that is built to last and minimizes long-term maintenance costs. Consider

the different capabilities needed for each stage of developing an application based on

CompactRIO or NI Single-Board RIO, and take advantage of resources that can help you

efficiently learn those necessary skills.

LabVIEW RIO Evaluation Kit - 86 - ni.com/rioeval/nextstep

Core Capabilities Required for all CompactRIO and NI Single-Board RIO Users

To begin with, everyone who uses LabVIEW and CompactRIO or NI Single-Board RIO should
have the ability to

 Install and configure CompactRIO hardware and LabVIEW software

 Create a diagram or architecture for your system

 Navigate the LabVIEW environment

 Apply key LabVIEW structures (While Loops, clusters, arrays, and so on)

 Develop basic, functional applications in LabVIEW

 Apply common design patterns (state machine, producer/consumer, and so on)

 Understand the difference between Windows and real-time operating systems

 Implement communication between processes

 Deploy an application

To help you learn these abilities, National Instruments recommends the following resources:

 Getting Started With NI Products (ni.com/gettingstarted)

 LabVIEW Core 1, LabVIEW Core 2, and LabVIEW Real-Time 1 training courses

(ni.com/training)

 LabVIEW for CompactRIO Developer’s Guide (ni.com/compactriodevguide)

From there, attributes of your application or job determine whether you need additional
capabilities.

http://www.ni.com/gettingstarted/
http://www.ni.com/training/
http://www.ni.com/compactriodevguide/

LabVIEW RIO Evaluation Kit - 87 - ni.com/rioeval/nextstep

Identifying Additional Capabilities Required by Your Application

To determine the level of skills you need, ask the following four questions (circle one answer
for each). For each of your answers, look at the following table to identify the capabilities you
need and learning resources you can use.

1. How will the system I am developing be used?

a. Ongoing use or deployment over multiple months or years

b. Functional prototype or short-term use system

2. What I/O rates does my application require?

a. One or more I/O channels sampled or updated at >500 Hz

b. All I/O channels sampled or updated at rates <500 Hz

3. Who is developing the LabVIEW code for this system?

a. Multiple developers with each responsible for a portion of the codebase

b. A single person is developing the entire codebase

4. Will this system be used in the medical device industry to automate a manufacturing

process or test products?

a. Yes

b. No

LabVIEW RIO Evaluation Kit - 88 - ni.com/rioeval/nextstep

Questions

and Answers

You Need to Be Able To… Recommended Resources

1 a No additional capabilities required

b  Follow software engineering best practices to create
scalable, maintainable applications in LabVIEW

 Identify performance, reliability, and communication
requirements for your system

 Optimize your code to meet those requirements

 Design for reliability: Build in system health
monitoring and comprehensive error handling

NI training courses:

 LabVIEW Real-Time 2
 LabVIEW Core 3

ni.com content:

 LabVIEW for CompactRIO
Developers Guide

2 a  Compile and deploy your VIs to hardware targets
based on reconfigurable I/O (RIO)

 Use an FPGA to acquire and output analog and digital
signals

 Understand and control timing of operations on the
FPGA target

NI training courses:

 LabVIEW FPGA

ni.com content:

 LabVIEW for CompactRIO
Developers Guide

b Acquire I/O using the NI Scan Engine ni.com content:

 LabVIEW for CompactRIO
Developers Guide

3 a No additional capabilities required

b  Adapt the software engineering process to your
project

 Select and use appropriate tools to help you manage
application development

 Conduct an effective LabVIEW code review
 Develop a test and validation strategy

NI training courses:

 Managing Software
Engineering in LabVIEW

4 b No additional capabilities required

a  Understand regulatory requirements in the industry

 Follow best practices for using standards and
application life cycle processes

 Use the GAMP 5 risk-based approach for developing
test applications

 Take advantage of NI tools and techniques to
simplify testing and documentation requirements

NI training courses:

 Using LabVIEW for Test
and Automation in
Regulated Markets

Table 1. Identify the capabilities you need for your project and the learning resources you can

use.

http://sine.ni.com/tacs/app/overview/p/ap/of/lang/en/ol/en/oc/us/pg/1/sn/n24:14414,n8:8/id/1590/
http://sine.ni.com/tacs/app/overview/p/ap/of/lang/en/ol/en/oc/us/pg/1/sn/n24:12754,n8:28/id/1584/
http://www.ni.com/compactriodevguide/
http://www.ni.com/compactriodevguide/
http://sine.ni.com/tacs/app/overview/p/ap/of/lang/en/ol/en/oc/us/pg/1/sn/n24:4769,n8:4398/id/1597/
http://www.ni.com/compactriodevguide/
http://www.ni.com/compactriodevguide/
http://www.ni.com/compactriodevguide/
http://www.ni.com/compactriodevguide/
http://sine.ni.com/tacs/app/overview/p/ap/of/lang/en/ol/en/oc/us/pg/1/sn/n24:12419,n8:28/id/1593/
http://sine.ni.com/tacs/app/overview/p/ap/of/lang/en/ol/en/oc/us/pg/1/sn/n24:12419,n8:28/id/1593/
http://sine.ni.com/tacs/app/overview/p/ap/of/lang/en/ol/en/oc/us/pg/1/sn/n24:15596,n8:28/id/1900/
http://sine.ni.com/tacs/app/overview/p/ap/of/lang/en/ol/en/oc/us/pg/1/sn/n24:15596,n8:28/id/1900/
http://sine.ni.com/tacs/app/overview/p/ap/of/lang/en/ol/en/oc/us/pg/1/sn/n24:15596,n8:28/id/1900/

LabVIEW RIO Evaluation Kit - 89 - ni.com/rioeval/nextstep

CompactRIO/Single-Board RIO Recommended Resources Summary

Need More Help?

Contact a National Instruments Training & Certification Specialist at ni.com/contact for

additional guidance on the level of skill you need for your application.

No Time to Learn?

Many National Instruments Alliance Partners have already invested in the level of proficiency

required for your application. If you have a CompactRIO or NI Single-Board RIO project that

requires a greater skill level than you currently have and you are unable to gain the required

level in the time allotted for your project, NI can temporarily augment your expertise by

connecting you with an Alliance Partner that can provide consulting services while you get up

to speed. Find an Alliance Partner in your area at ni.com/alliance.

http://sine.ni.com/apps/utf8/nicc.call_me?p_lang_id=us
http://www.ni.com/alliance/

LabVIEW RIO Evaluation Kit - 90 - ni.com/rioeval/nextstep

Appendix B | Changing the IP Address in the LabVIEW Project

Your RIO device is identified by its IP address. For each exercise, confirm that the IP address in
the project matches the IP address of your RIO device. The National Instruments LabVIEW RIO
Evaluation Setup utility should have prompted you to write down the NI-RIO Evaluation Device
IP address, but you also can locate the device through the following steps.

If you already know your IP address, skip to Step 4.

1. Determine the IP address of your NI-RIO Evaluation Device by opening the
Measurement & Automation Explorer with the icon on your desktop or by selecting
Start»All Programs»National Instruments»NI MAX.

2. Click the triangle next to Remote Systems.

3. Click on your NI-RIO Evaluation Device in the Remote Systems tree and on the right
hand side note the IP address that appears in the System Settings tab.

4. Change the IP address of the NI-RIO Evaluation HW target in the LabVIEW Project

Explorer window to match the IP address of your evaluation board.

a. Right-click the NI-RIO Evaluation HW target in the LabVIEW Project Explorer

window and select Properties from the menu to display the General properties

page.

b. In the IP Address / DNS Name box, enter the IP address you wrote down from

the National Instruments LabVIEW RIO Evaluation Kit Setup utility or just now

from Measurement & Automation Explorer and click OK.

c. Right-click on the NI-RIO Evaluation HW target in the Project Explorer window

and select Connect to verify connection to the evaluation device.

