Implementation and Control for an MDOF Cable-Suspended Parallel Robot

Jonqlan Lin, C. Y. Wu, J. Chang
Department of Mechanical Engineering, Chien Hsin University of Science and Technology
Taiwan, ROC

2017 IEEE 5th International Symposium on Robotics and Intelligent Sensors
(IEEE IRIS2017)

Grant No. : MOST 103-2221-E-231 -021-
National Instruments (NI) 2017 Academic Research Grant Program
OUTLINE

INTRODUCTION

SYSTEM CONFIGURATION

KINEMATIC ANALYSIS

CONTROLLER DESIGN

RESULTS AND DISCUSSIONS
INTRODUCTION

◆ Cable Suspended Robot – Parallel Type Robot
 ◆ parallel manipulators with the end-effector supported by cables with driving motors.

◆ Cable Suspended Robot – Low inertia, high load capacity, high re-configurability, high payload-to-weight ratio, large reachable workspace

◆ Applications- Aerostats, towing cranes, elevators, locomotion interfaces, large-scale manufacturing

◆ Challenges – cables flexibility, tension limit, MDOF control...
The CCD and the standard image processing algorithm (NI Vision builder) are used to monitor real-time scenarios and to estimate the real position of the suspended end-effector.

The control programming and machine algorithms was established using the National Instrument (NI) commercial package LabVIEW.
MOTION CONCEPT
SYSTEM CONFIGURATION – Hardware Implementation
HMI – LabVIEW
Standard Image Processing – NI Vision Builder
KINEMATIC ANALYSIS

\[r \cdot \sin \theta_1 + l_1 \cdot \sin \theta_2 = Z \]

\[r \cdot \cos \theta_1 + l_1 \cdot \cos \theta_2 = D \]

\[l_1 = \sqrt{(D - r \cdot \cos \theta_1)^2 + (Z - r \cdot \sin \theta_1)^2} \]

\[Z = Z_{\text{max}} - Z_h \]
KINEMATIC ANALYSIS

\[l_{uo_i} = l_{\text{max}} - l_i, \text{ for } i = 1 \text{ to } 4 \]

\[l_{lo_i} = l_{\text{min}} - l_i, \text{ for } i = 5 \text{ to } 8 \]

\[l_1 = l_7 = \sqrt{(D - r \cdot \cos \theta_1 - X_d)^2 + Y_d^2 + (Z - r \cdot \sin \theta_1)^2} \]

\[l_2 = l_8 = \sqrt{(D + r \cdot \cos \theta_1 - X_d)^2 + Y_d^2 + (Z_p + Z_h + r \cdot \sin \theta_1)^2} \]

\[l_3 = l_5 = \sqrt{(D - r \cdot \cos \theta_1 - Y_d)^2 + X_d^2 + (Z - r \cdot \sin \theta_1)^2} \]

\[l_4 = l_6 = \sqrt{(D + r \cdot \cos \theta_1 - Y_d)^2 + X_d^2 + (Z_p + Z_h + r \cdot \sin \theta_1)^2} \]

\[M_{a,u_i} = \frac{l_{uo_i}}{\pi \cdot D_w} \cdot 360^\circ, \text{ for } i = 1 \text{ to } 4 \]

\[M_{a,l_i} = \frac{l_{lo_i}}{\pi \cdot D_w} \cdot 360^\circ, \text{ for } i = 5 \text{ to } 8 \]

\[M_{p,u_i} = M_{a,u_i} \cdot \frac{10000 \text{ pulse}}{360^\circ}, \text{ for } i = 1 \text{ to } 4 \]

\[M_{p,l_i} = M_{a,l_i} \cdot \frac{10000 \text{ pulse}}{360^\circ}, \text{ for } i = 5 \text{ to } 8 \]

\[l_i = l_{\text{max}} - \frac{M_{p,u_i} \cdot \pi \cdot D_w}{10000 \text{ pulse}}, \text{ for } i = 1 \text{ to } 4 \]

\[l_i = l_{\text{max}} - \frac{M_{p,l_i} \cdot \pi \cdot D_w}{10000 \text{ pulse}}, \text{ for } i = 5 \text{ to } 8 \]
CONTROLLER DESIGN

Upper-Level Control
- Main Control Mode
- Four Quadrants
- Three Axes
- Two Rotation Angles
- Group Motors Concept

Lower-Level Control
- Fuzzy Modification Control
- Fining Modification
- Rule Base and MF Design

Point-to-Point Control

Desired Point Input

Select Target Quadrant

Determine Main Control Type

- If tracking error $e < \varepsilon$
- By Eq. (8) & (9) to determine the cable lengths and to estimate the robot position

Lower-Level Control

Fuzzy Modification Control

END
CONTROLLER DESIGN

Point-to-Point Control

Upper-Level Control

I: M₁, M₄, M₅, M₈
II: M₃, M₄, M₇, M₈
III: M₂, M₃, M₆, M₇
IV: M₁, M₂, M₅, M₆
X-axis: M₁, M₅
Y-axis: M₄, M₈
Z-axis: M₁, M₂, M₇
θₓ: M₁, M₁′
θᵧ: M₁′, M₆

Fining Action
By Fuzzy Logic
(Lower-Level Control)

End-effector (Gripper)
RESULTS AND DISCUSSIONS

Oscillation Control for 4-Cables & 8-Cables

- θ_x
- θ_y
RESULTS AND DISCUSSIONS

Positioning error for the measured point by Control Mode A (unit: mm)

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Point No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Standard Deviation (σ)</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(-205, 206)</td>
<td>(-207,207)</td>
<td>(-205,207)</td>
<td>(-206,209)</td>
<td>(-207,208)</td>
<td>(1, 1.14)</td>
<td>(2.7, 3.3)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(2, 218)</td>
<td>(1,216)</td>
<td>(2,217)</td>
<td>(4,221)</td>
<td>(3,218)</td>
<td>(1.14, 1.87)</td>
<td>(1.1, 8.1)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(211, 214)</td>
<td>(208,216)</td>
<td>(209,213)</td>
<td>(210,214)</td>
<td>(201,213)</td>
<td>(3.96, 1.22)</td>
<td>(3.8, 6.2)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(-206, 11)</td>
<td>(-208,14)</td>
<td>(-209,11)</td>
<td>(-206,13)</td>
<td>(-209,11)</td>
<td>(1.51, 1.41)</td>
<td>(3.4, 5.4)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(0, 0)</td>
<td>(0,-1)</td>
<td>(-1,1)</td>
<td>(1,0)</td>
<td>(1,1)</td>
<td>(0.84, 0.84)</td>
<td>(0.3, 0.3)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(216, -1)</td>
<td>(210,0)</td>
<td>(215,0)</td>
<td>(212,-1)</td>
<td>(215,-2)</td>
<td>(2.50, 0.84)</td>
<td>(6.1, 0.5)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(-205, -221)</td>
<td>(-200,-220)</td>
<td>(-201,-220)</td>
<td>(-201,-218)</td>
<td>(-200,-218)</td>
<td>(2.07, 1.34)</td>
<td>(1.1, 8.6)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(-5, -228)</td>
<td>(-2,-229)</td>
<td>(-2,-228)</td>
<td>(-3,-230)</td>
<td>(-5,-230)</td>
<td>(1.51, 1)</td>
<td>(1.6, 12.9)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(203, -224)</td>
<td>(201,-221)</td>
<td>(203,-221)</td>
<td>(201,-222)</td>
<td>(205,-224)</td>
<td>(1.67, 1.5)</td>
<td>(1.3, 10)</td>
<td></td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSIONS

Video Demonstration
CONCLUSION

- This study develops a MDOF cable-driven parallel robot with suspended end-effector.

- This research proposes a hierarchical control methodology to satisfy the control requirement, which includes main control mode and fuzzy modification control mode.

- The upper-level control is responsible for tracking the suspended end-effector to the target region.

- The lower-level control is concentrated on the fining modification for the positioning.

- The discussion of the broad issues deliberated in this investigation will be applied in aerostats, towing cranes, locomotion interface, and large-scale manufacturing applications that require cable-driven parallel robot.
Thanks ~~