
LabVIEWTM

Database Connectivity Toolkit User Manual

Database Connectivity Toolkit User Manual

June 2008
371525A-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599,
Canada 800 433 3488, China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00,
Finland 358 (0) 9 725 72511, France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000,
Israel 972 3 6393737, Italy 39 02 41309277, Japan 0120-527196, Korea 82 02 3451 3400,
Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 (0) 348 433 466,
New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, Taiwan 886 02 2377 2222,
Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter
the info code feedback.

© 1997–2008 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In
the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document
without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING
FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of
the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the
product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section
on ni.com/legal for more information about National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your media, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR
ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF
HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY
UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH,
THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES,
INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS
CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION
DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY
RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER
NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v Database Connectivity Toolkit User Manual

Contents

About This Manual
Conventions ...vii
Related Documentation..viii

Chapter 1
Introduction to the Database Connectivity Toolkit

Chapter 2
OLE DB Providers

OLE DB Standard ..2-1
OLE DB Provider for ODBC...2-3
OLE DB Provider for SQL Server...2-4
OLE DB Provider for Jet ...2-4
OLE DB Provider for Oracle ...2-6
Custom OLE DB Providers ...2-7

Chapter 3
Connecting to a Database

DSNs and Data Source Types..3-1
ODBC Data Source Administrator..3-1
Connecting to Databases Using DSNs ..3-3

UDLs..3-4
Configuring a UDL..3-5
Connecting to Databases Using UDLs ..3-5

Chapter 4
Supported Data Types

Data Type Mapping ...4-1
Working with Date/Time Data Types..4-4
Handling NULL Values...4-5
Currency and Boolean Data Types ..4-7

Chapter 5
Performing Standard Database Operations

Writing Data to a Database ..5-1
Reading Data from a Database ..5-3

Contents

Database Connectivity Toolkit User Manual vi ni.com

Limiting Data to Read... 5-5
Creating and Deleting Tables .. 5-6
Using the Database Connectivity Toolkit Examples... 5-8

Using the Examples with Other Databases ... 5-8
Using the Examples without a Database... 5-8

Chapter 6
Using the Database Connectivity Toolkit Utility VIs

Getting Table and Column Information .. 6-1
Getting and Setting Database Properties ... 6-2

ADO Reference Classes.. 6-3
Database Properties... 6-4

Formatting Date and Time... 6-4
Performing Database Transactions.. 6-5

Locking Transactions and Setting Isolation Levels .. 6-6
Writing and Reading Data Files .. 6-8

Chapter 7
Performing Advanced Database Operations

Executing SQL Statements and Fetching Data ... 7-1
Navigating Database Records.. 7-3

Using Cursors.. 7-3
Cursor Types... 7-4

Navigating Recordsets .. 7-6
Using Parameterized Statements ... 7-9
Using Stored Procedures ... 7-11

Creating Stored Procedures... 7-12
Running Stored Procedures without Parameters... 7-13
Running Stored Procedures with Parameters.. 7-14

Chapter 8
Building Applications

Using UDLs and DSNs ... 8-1
Using Connection Strings.. 8-2

Appendix A
Technical Support and Professional Services

© National Instruments Corporation vii Database Connectivity Toolkit User Manual

About This Manual

This manual contains information about how to communicate and pass data
between LabVIEW and either a local or a remote database management
system (DBMS) using the LabVIEW Database Connectivity Toolkit.

This manual requires that you have a basic understanding of the LabVIEW
environment, your computer, and your computer operating system.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

About This Manual

Database Connectivity Toolkit User Manual viii ni.com

Related Documentation
The following documents contain information that you may find helpful as
you use the Database Connectivity Toolkit.

• LabVIEW Help, available by selecting Help»Search the LabVIEW
Help

• Example VIs located in the labview\examples\database
directory. You also can use the NI Example Finder, available by
selecting Help»Find Examples, to find example VIs.

Note The following resources offer useful background information on the general
concepts discussed in this documentation. These resources are provided for general
informational purposes only and are not affiliated, sponsored, or endorsed by National
Instruments. The content of these resources is not a representation of, may not correspond
to, and does not imply current or future functionality in the Database Connectivity Toolkit
or other National Instruments product.

• Forta, Ben. 2004. Sams Teach Yourself SQL in 10 Minutes. 3rd ed.
Sams.

• Patrick, John J. 2002. SQL Fundamentals. 2nd ed. Prentice Hall.

• Sussman, David. 2004. ADO Programmer’s Reference. Apress.

• Vaughn, William R. 2000. ADO Examples and Best Practices. Apress.

© National Instruments Corporation 1-1 Database Connectivity Toolkit User Manual

1
Introduction to the Database
Connectivity Toolkit

The LabVIEW Database Connectivity Toolkit contains a set of VIs with
which you can perform both common database tasks and advanced
customized tasks.

The following list describes the main features of the Database Connectivity
Toolkit:

• Works with any provider that adheres to the Microsoft ActiveX Data
Object (ADO) standard.

• Works with any database driver that complies with ODBC or OLE DB.

• Maintains a high level of portability. In many cases, you can port an
application to another database by changing the connection
information you pass to the DB Tools Open Connection VI.

• Converts database column values from native data types to standard
Database Connectivity Toolkit data types, further enhancing
portability.

• Permits the use of SQL statements with all supported database
systems, even non-SQL systems.

• Includes VIs to retrieve the name and data type of a column returned
by a SELECT statement.

• Creates tables and selects, inserts, updates, and deletes records without
using SQL statements.

Because of the wide range of databases with which the Database
Connectivity Toolkit works, some portability issues remain. Consider the
following issues when choosing your database system:

• Some database systems, particularly the flat-file databases such as
dBase, do not support floating-point numbers. In cases where
floating-point numbers are not supported, the toolkit converts
floating-point numbers to the nearest equivalent, usually binary-coded
decimal (BCD), before storing them in the database. Very large or very
small floating-point numbers can pass the upper or lower limits of the
precision available for a BCD value.

Chapter 1 Introduction to the Database Connectivity Toolkit

Database Connectivity Toolkit User Manual 1-2 ni.com

• The Microsoft ODBC driver for Oracle and the Microsoft OLE DB
Provider for Oracle do not support BLOB (binary) data types. You
cannot use Oracle with the Database Connectivity Toolkit for binary
data with these drivers. Instead, use the OLE DB Provider and ODBC
driver that Oracle provides. Refer to the Oracle Web site at
www.oracle.com for more information about the OLE DB Provider
and the ODBC driver that Oracle provides.

• Restrictions on column names vary among database systems. For
maximum portability, limit column names to ten uppercase characters
without spaces. You might be able to access longer column, or field,
names or names that contain spaces by enclosing the name in double
quotes.

• Some database systems do not support date, time, or date and time data
types.

http://www.oracle.com

© National Instruments Corporation 2-1 Database Connectivity Toolkit User Manual

2
OLE DB Providers

The Microsoft Universal Data Access (UDA) platform allows applications
to exchange relational or non-relational data across intranets or the Internet,
essentially connecting any type of data with any type of application. OLE
DB is the Microsoft system-level programming interface to diverse sources
of data. The Microsoft ActiveX Data Object (ADO) standard is the
application-level programming interface.

The Microsoft Data Access Components (MDAC) are the practical
implementation of the Microsoft UDA strategy. MDAC includes ODBC,
OLE DB, and ADO components. MDAC also installs several data
providers you can use to open a connection to a specific data source, such
as an MS Access database.

OLE DB Standard
OLE DB specifies a set of Microsoft Component Object Model (COM)
interfaces that support various database management system services.
These interfaces enable you to create software components that comprise
the UDA platform. OLE DB is a C++ API that allows for lower-level
database access from a C++ compiler. Three general types of COM
components for OLE DB include:

• OLE DB Data Providers—Data-source-specific software layers that
access and expose data.

• OLE DB Consumers—Data-centric applications, components, or
tools that use data through OLE DB interfaces. Using networking
terms, OLE DB consumers are the clients, and the OLE DB data
provider is the server.

• OLE DB Service Providers—Optional components that implement
standard services to extend the functionality of data providers.
Examples of these services include cursor engines, query processors,
and data conversion engines.

Chapter 2 OLE DB Providers

Database Connectivity Toolkit User Manual 2-2 ni.com

All data access in the LabVIEW Database Connectivity Toolkit occurs
through an OLE DB provider. If you do not specify a provider, the toolkit
uses the OLE DB Provider for ODBC provider, as described in the OLE DB
Provider for ODBC section of this chapter. Microsoft provides some
relational data providers as part of the MDAC installation.

Microsoft also provides a number of OLE DB data providers for
non-relational data sources, including the following:

• OLE DB provider for AS/400

• OLE DB provider for Index Server

• OLE DB provider for Internet Publishing

• OLE DB provider for Active Directory

• OLE DB provider for Microsoft Exchange

• OLE DB provider for OLAP (Online Analytical Processing)

Some third-party vendors also supply OLE DB providers.

Chapter 2 OLE DB Providers

© National Instruments Corporation 2-3 Database Connectivity Toolkit User Manual

OLE DB Provider for ODBC
The OLE DB provider for ODBC acts as a conversion layer between OLE
DB interfaces and ODBC. The hierarchy of data interface layers between
LabVIEW and a database using the OLE DB provider for ODBC appears
in Figure 2-1.

Figure 2-1. Communication Path between LabVIEW and a Database
Using the OLE DB Provider for ODBC

MDAC 2.0 and later provide OLE DB providers for SQL Server, Jet, and
Oracle database systems. Using native providers is much faster than using
the OLE DB Provider for ODBC because native providers eliminate the
need for both the OLE DB to ODBC conversion process and for the ODBC

ADO (OLE DB Consumer)

OLE DB Services (Optional)

OLE DB Provider for ODBC

ODBC Driver Manager

LabVIEW

Oracle

SQL Server
ODBC Driver

DB Specific
ODBC Driver

Oracle
ODBC Driver

Any ODBC
Database

SQL Server

ODBC API

Chapter 2 OLE DB Providers

Database Connectivity Toolkit User Manual 2-4 ni.com

driver and ODBC Driver Manager layers. For this reason, always use the
native OLE DB data provider for the data source you are accessing if a
native provider is available.

OLE DB Provider for SQL Server
The OLE DB provider for SQL Server, shown in Figure 2-2, exposes data
stored in Microsoft SQL Server 6.5 or later databases.

Figure 2-2. Communication Path between LabVIEW and an SQL Server Database
Using the Native OLE DB Provider

OLE DB Provider for Jet
The OLE DB Provider for Jet uses the Microsoft Jet database engine to
expose data stored in Microsoft Access databases (.mdb) and numerous
Indexed Sequential Access Method (ISAM) databases, including Paradox,
dBase, Btrieve, Excel, and FoxPro. The Jet database engine is included
with Microsoft Access and is the underlying Database Management
System (DBMS) of Microsoft Access. Visual Basic for Applications is the
host language for the Jet DBMS.

LabVIEW

ADO (OLE DB Consumer)

OLE DB Services (Optional)

OLE DB Provider for SQL Server

SQL Server
Database

Chapter 2 OLE DB Providers

© National Instruments Corporation 2-5 Database Connectivity Toolkit User Manual

Figure 2-3. Communication Path between LabVIEW and an Access Database
Using the Native OLE DB Provider

Data Access Objects (DAO) is the Jet interface for using the Jet database
engine programmatically. DAO is a COM component that provides custom
applications with the power and flexibility of the Jet database engine in
a simple object model. DAO is also language-independent. Any
programming language or toolkit that supports OLE Automation can use
DAO and the Jet database engine.

Despite the availability of the OLE DB Provider for Jet and comparable
benchmarks, some of the functionality of DAO, such as data definition and
security, is not available in the OLE DB Provider for Jet.

Note Although DAO and ADO are both APIs for communicating with and manipulating
data in databases, they are separate and different. DAO is specifically used with the Jet
database engine, but ADO is part of Microsoft’s UDA strategy for sharing data between
applications and over the Internet.

ADO (OLE DB Consumer)

OLE DB Services (Optional)

OLE DB Provider for Jet

Jet Database Engine

LabVIEW

MS Access
Database

ISAM
Databases

Chapter 2 OLE DB Providers

Database Connectivity Toolkit User Manual 2-6 ni.com

OLE DB Provider for Oracle
The OLE DB provider for Oracle exposes OLE DB interfaces for retrieving
and manipulating data stored in Oracle 7.3.3 or later databases. The OLE
DB provider for Oracle is implemented as a layer on top of the Oracle
native API, the Oracle Call Interface (OCI). Refer to the Oracle Web site at
www.oracle.com for more information about the OLE DB provider for
Oracle.

Figure 2-4. Communication Path between LabVIEW and an Oracle Database
Using the Native OLE DB Provider

ADO (OLE DB Consumer)

OLE DB Services (Optional)

OLE DB Provider for Oracle

Oracle Call Interface (OCI)

LabVIEW

Oracle
Database

http://www.oracle.com

Chapter 2 OLE DB Providers

© National Instruments Corporation 2-7 Database Connectivity Toolkit User Manual

Custom OLE DB Providers
An advantage of UDA is the ability to develop custom OLE DB data
providers because UDA enables standardized access to data sources
beyond Microsoft products and the popular relational database systems.

If you need access to a data source that does not provide an OLE DB data
provider and does not support ODBC, you can create custom OLE DB data
providers that can expose any data source. For example, you can develop
custom OLE DB data providers for data sources such as the following:

• Personal address book

• Windows registry

• Scheduled tasks

• Shared memory

© National Instruments Corporation 3-1 Database Connectivity Toolkit User Manual

3
Connecting to a Database

Before you can access data in a table or execute SQL statements, you must
establish a connection to a database. The LabVIEW Database Connectivity
Toolkit supports multiple simultaneous connections to a single database or
to multiple databases. Use the DB Tools Open Connection VI to establish
the connection to a database.

Connecting to a database is where most errors occur because each database
management system (DBMS) uses different parameters for the connection
and different levels of security. The different standards also use different
methods of connecting to databases. For example, ODBC uses Data Source
Names (DSN) for the connection, whereas the Microsoft ActiveX Data
Object (ADO) standard uses Universal Data Links (UDL) for the
connection. The DB Tools Open Connection VI supports all methods for
connecting to a database.

DSNs and Data Source Types
A DSN is the name of the data source, or database, to which you are
connecting. The DSN also contains information about the ODBC driver
and other connection attributes including paths, security information, and
read-only status of the database. Two main types of DSNs exist: machine
DSNs and file DSNs. Machine DSNs are in the system registry and apply
to all users of the computer system or to a single user. DSNs that apply to
all users of a computer system are system DSNs. DSNs that apply to single
users are user DSNs. A file DSN is a text file with a .dsn extension and is
accessible to anyone with proper permissions. File DSNs are not restricted
to a single user or computer system. Use the ODBC Data Source
Administrator to create and configure DSNs.

ODBC Data Source Administrator
Use the ODBC Data Source Administrator to register and configure drivers
to make them available as data sources for applications. In the Windows
Control Panel, select Administrative Tools»Data Sources (ODBC) to
display the ODBC Data Source Administrator. The system saves the
configuration for each data source in the registry or in a file.

Chapter 3 Connecting to a Database

Database Connectivity Toolkit User Manual 3-2 ni.com

ODBC drivers for databases such as SQL Server and Oracle contain
settings and additional dialog boxes for configuring items such as server
information, user identification, and passwords. Figure 3-1 shows the
ODBC Microsoft Access Setup dialog box for the system DSN named
LabVIEW that the Database Connectivity Toolkit examples use.

Figure 3-1. ODBC Microsoft Access Setup Dialog Box

The Database Connectivity Toolkit complies with the ODBC standard, so
you can use the toolkit with any ODBC-compliant database drivers. The
Database Connectivity Toolkit does not provide custom ODBC drivers.
However, Microsoft Data Access Components (MDAC) includes several
ODBC drivers. Database system vendors and third-party developers also
offer large selections of ODBC drivers. Refer to the vendor documentation
for information about registering the specific database drivers in the ODBC
Data Sources Administrator.

Chapter 3 Connecting to a Database

© National Instruments Corporation 3-3 Database Connectivity Toolkit User Manual

Connecting to Databases Using DSNs
You can use the DB Tools Open Connection VI to connect to various
databases that you specify with DSNs.

You can use a string to specify a system DSN or user DSN. The VI in
Figure 3-2 specifies a DSN called MS Access to open a connection to that
specific database.

Figure 3-2. Connecting to an Access Database Using a System DSN

You can use a path to specify a file DSN. The VI in Figure 3-3 specifies a
path to a file DSN called access.dsn to open a connection to the
database.

Figure 3-3. Connecting to an Access Database Using a File DSN

Notice that the connection information input of the DB Tools Open
Connection VI is polymorphic. This VI accepts either a string or path for
the DSN.

The VI in Figure 3-4 connects to an Oracle database using a system DSN.
Notice that the userID and password parameters are wired. Some DBMS
require that these parameters be set in order to connect to a database. You
should be familiar with your DBMS and how to specify the connection
parameters.

Chapter 3 Connecting to a Database

Database Connectivity Toolkit User Manual 3-4 ni.com

Figure 3-4. Connecting to an Oracle Database Using a System DSN

As shown in the previous examples, connecting to a database using the DB
Tools Open Connection VI requires only a string or path value specifying
the DSN along with optional user ID and password strings depending upon
the DBMS. Therefore, the majority of problems in defining a connection
occur when creating the DSN. Some ODBC drivers have an option to test
the connection. Test the connection between the DSN and the database
before you try to do anything with the Database Connectivity Toolkit.

Whereas you must create a DSN to connect to a database using ODBC,
you use UDLs to connect to databases that use ADO and OLE DB.

UDLs
A UDL is similar to a DSN in that it describes more than just the data
source. A UDL specifies what OLE DB provider is used, server
information, the user ID and password, the default database, and other
related information.

You can create a UDL in one of the following three ways:

• Use the prompt? input of the DB Tools Open Connection VI,
as shown in Figure 3-5.

Figure 3-5. Using a Prompt to Create a UDL

The prompt? input displays the Data Link Properties dialog box
when the DB Tools Open Connection VI runs. You can select the
appropriate options in this dialog box to make the database connection.

Chapter 3 Connecting to a Database

© National Instruments Corporation 3-5 Database Connectivity Toolkit User Manual

• Select Tools»Create Data Link in LabVIEW to display the Data
Link Properties dialog box.

Note The Database Connectivity Toolkit installer creates a directory called data links
inside the labview/Database directory. Save all UDL files and file DSNs to this
directory so you can find them easily.

• In Windows Explorer, right-click an empty location in a folder and
select New»Text Document from the shortcut menu. Change the file
extension of this document from .txt to .udl. You then can
double-click the UDL file to display the Data Link Properties dialog
box.

Configuring a UDL
Any method of creating a UDL involves the Data Link Properties dialog
box. Select a data provider from the Provider page of this dialog box. Refer
to Chapter 2, OLE DB Providers, to determine which provider to use with
a database.

After you select a data provider from the list on the Provider page, you can
configure the database connection on the Connection page. The options on
the Connection page are different depending upon which provider you
choose. For example, the Connection page for an ODBC provider contains
a selection for a DSN or connection string along with user name and
password information. Click the Test Connection button to test the
database connection after you configure the various properties. Make sure
the connection test passes before you click the OK button to exit.

Connecting to Databases Using UDLs
Use a path control or constant to specify the path to a UDL file unless you
set the prompt? input of the DB Tools Open Connection VI to TRUE. The
VI in Figure 3-6 uses a path constant to specify the UDL for a Microsoft
Access database.

Figure 3-6. Connecting to a Microsoft Access Database Using a UDL

Chapter 3 Connecting to a Database

Database Connectivity Toolkit User Manual 3-6 ni.com

Although you might have created the DSN or UDL correctly, you still
might not be able to connect to a specific database because of situations
beyond your control. The following situations can prevent you from
connecting to a database:

• The requested server is down.

• The network is down.

• All server connections are full, and no other users can connect.

• The maximum number of user licenses have been reached.

• You do not have permission to access the specified database.

• The specified DSN does not exist. Either you are on a different
machine, or the specified DSN was deleted.

• The selected data provider is the wrong one for the database.

If the DB Tools Open Connection VI returns errors, you can open the UDL
file manually and click the Test Connection button on the Data Link
Properties dialog box to verify that you have the correct settings and that
you have access to the database. If the test connection fails, you cannot
connect to that database with the Database Connectivity Toolkit. Contact
the database administrator for help.

© National Instruments Corporation 4-1 Database Connectivity Toolkit User Manual

4
Supported Data Types

LabVIEW, the Microsoft ActiveX Data Object (ADO) standard, and each
database management system (DBMS) support a different set of data types.

Data Type Mapping
The LabVIEW Database Connectivity Toolkit maps the various LabVIEW
data types to data types supported by some of the common DBMS.
Table 4-1 shows which SQL data types the Database Connectivity Toolkit
supports.

Table 4-1. Database Connectivity Toolkit Data Types

Database Connectivity
Toolkit Data Type SQL Data Type

Description of SQL
Data Type

string CHAR (x),
VARCHAR (x)

CHAR—Fixed character data such as
CHAR (16). Extra is filled with
spaces.

VARCHAR—Varying character
data. Does not pad with spaces.

long INTEGER Precision depends on the specific
SQL implementation; database
developer cannot specify the
precision.

single REAL Single-precision floating-point
number determined by the OS
implementation of a SGL.

double DOUBLE PRECISION Double-precision floating-point
number determined by the OS
implementation of a DBL.

Chapter 4 Supported Data Types

Database Connectivity Toolkit User Manual 4-2 ni.com

All LabVIEW data types are supported but not necessarily in their native
form. For example, bytes (U8 and I8) and words (U16 and I16) can be
treated as longs (I32). The binary data type encompasses any piece of
LabVIEW data, such as waveform, cluster, or array data, that cannot be
represented natively in the database. Table 4-2 lists LabVIEW data types
and the data types in the Database Connectivity Toolkit to which they
correspond.

date/time DATE, TIME (p) DATE—Length of 10 positions in the
form: YYYY-MM-DD.

VARCHAR—Has the form:
HH:MM:SS.SSS... specified by p.

binary BINARY (n),
VARBINARY (n)

BINARY—Fixed length binary
string with maximum length n.

VARBINARY—Variable length
binary string with maximum length n.

Table 4-2. LabVIEW and the Database Connectivity Toolkit Data Types

LabVIEW Data Type
Database Connectivity Toolkit

Data Type

8-bit integers long

16-bit integers long

32-bit integers <= 2147483647 long

32-bit integers > 2147483647 string

8-bit enum long

16-bit enum long

32-bit enums <= 2147483647 long

32-bit enums > 2147483647 string

64-bit integers string

64-bit enums string

Single numeric single

Table 4-1. Database Connectivity Toolkit Data Types (Continued)

Database Connectivity
Toolkit Data Type SQL Data Type

Description of SQL
Data Type

Chapter 4 Supported Data Types

© National Instruments Corporation 4-3 Database Connectivity Toolkit User Manual

Although the Database Connectivity Toolkit supports refnums, refnums are
ephemeral constructs whose values are meaningless after usage. If you
want to save a refnum to a database table, you must first type cast the
refnum to an integer and then write the integer to the table.

Note The Database Connectivity Toolkit inserts DAQ, IVI, and VISA Channel refnums
into the database as strings. You can use the Database Variant To Data function to convert
these refnums back into DAQ, IVI, or VISA Channel refnums.

Double numeric double

Boolean string

String string

Date/Time string date/time

Time stamp date/time

Path string

I/O channel string

Refnum binary

Complex numeric binary

Extended numeric binary

Picture control binary

Array binary

Cluster binary

Variant binary

Waveform binary

Digital waveform binary

Digital data binary

WDT binary

Fixed-point numeric binary

Table 4-2. LabVIEW and the Database Connectivity Toolkit Data Types (Continued)

LabVIEW Data Type
Database Connectivity Toolkit

Data Type

Chapter 4 Supported Data Types

Database Connectivity Toolkit User Manual 4-4 ni.com

Working with Date/Time Data Types
Date/time is an important data type for databases. You can use the time
stamp data type to represent date and time in LabVIEW. You also can use
the DB Tools Format Datetime Str VI to insert date/time strings into a
database. The DB Tools Format Datetime Str VI formats a string into the
correct format for SQL. This VI places a header at the beginning of the
string that is later decoded in other VIs to determine that the string is a
date/time string. Refer to the Formatting Date and Time section of
Chapter 6, Using the Database Connectivity Toolkit Utility VIs, for more
information about using the DB Tools Format Datetime Str VI to format
date and time in a database.

The main problem with the date/time data type is that no uniformity exists
and each database supports a different format. In other words, when you
select date/time values from a database, they might be returned in a
different form depending on the DBMS.

Chapter 4 Supported Data Types

© National Instruments Corporation 4-5 Database Connectivity Toolkit User Manual

Handling NULL Values
Databases have NULL fields that are empty fields containing no data.
LabVIEW treats NULLs as default data, such as an empty string, a
zero-value numeric, or a FALSE Boolean. Therefore, for example, you
cannot easily differentiate between a 0.00 value in a numeric from one that
is NULL. Figures 4-1 and 4-2 show how different formats represent NULL
values.

Figure 4-1. Handling of NULLs in Different Formats

Chapter 4 Supported Data Types

Database Connectivity Toolkit User Manual 4-6 ni.com

When you convert the NULL values in the variant array into numeric
values, the NULLs become 0.00 values. However, when you convert the
variant array into strings, the NULLs become empty strings. You can
convert the strings to numbers and, when the string is empty, insert a NaN
value, as shown in Figure 4-2.

Figure 4-2. Block Diagram Showing How NULLs Are Handled

Chapter 4 Supported Data Types

© National Instruments Corporation 4-7 Database Connectivity Toolkit User Manual

Currency and Boolean Data Types
Although currency and Boolean (Yes/No in Microsoft Access) are
common data types, the Database Connectivity Toolkit does not directly
support these data types because these data types are not available in other
DBMS such as Oracle. However, you can write data to and read data from
these field types with the Database VIs using strings. Figure 4-3 shows how
you can convert currency and Boolean data to strings and write the
information to the appropriate fields in a Microsoft Access table.

Figure 4-3. Writing Currency and Boolean Data

When you read Boolean data from a table, the data is returned as TRUE or
FALSE strings. Currency data is read from a table as a number without the
$ currency symbol. Avoid using data types that are not supported by the
Database Connectivity Toolkit.

© National Instruments Corporation 5-1 Database Connectivity Toolkit User Manual

5
Performing Standard Database
Operations

You can use the Database VIs and function to write data to or read data
from databases and to create and delete tables.

Writing Data to a Database
Writing data to a database with the LabVIEW Database Connectivity
Toolkit is similar to writing data to a file. You open a connection, insert the
data, and close the connection when you are finished. Figures 5-1 and 5-2
show the front panel and block diagram of a VI that writes test information
to a database table. The connection information is a path to the UDL called
test.udl, and the table name is testdata.

Figure 5-1. Front Panel Showing How to Write Data to a Database Table

Chapter 5 Performing Standard Database Operations

Database Connectivity Toolkit User Manual 5-2 ni.com

Figure 5-2. Block Diagram Showing How to Write Data to a Database Table

Figure 5-2 uses three Database VIs: the DB Tools Open Connection VI, the
DB Tools Insert Data VI, and the DB Tools Close Connection VI. The
create table? input of the DB Tools Insert Data VI is set to TRUE to create
the specified table if it does not already exist. If this table does exist, then
the data is appended to the existing table. The DB Tools Insert Data VI
accepts any type for the data input. If the input type is a cluster, each cluster
element is placed into a different field. The LabVIEW data types are
converted to the appropriate database data types. Refer to Chapter 4,
Supported Data Types, for more information about supported data types.

Figure 5-3 shows the testdata table as it appears in Microsoft Access.
Note that the front panel and block diagram previously shown do not
specify the type of database to use. That configuration occurs when the
test.udl is created.

Figure 5-3. Database Table Displayed in Microsoft Access

Notice that the column names are not specified in the VI, so the table uses
default column names. You can specify column names using the columns
input of the DB Tools Insert Data VI.

Chapter 5 Performing Standard Database Operations

© National Instruments Corporation 5-3 Database Connectivity Toolkit User Manual

Reading Data from a Database
Reading data from a database table is similar to writing data to the database.
You open a connection to the database, select the data from a table, and
then close the connection. Figures 5-4 and 5-5 show how you can read the
data back from the testdata table used in the previous example.

Figure 5-4. Front Panel Showing How to Read Data from a Database Table

Figure 5-5. Block Diagram Showing How to Read Data from a Database Table

Notice in Figures 5-4 and 5-5 that the database data is returned as a
two-dimensional array of variants. As the name implies, the Microsoft
ActiveX Data Object (ADO) standard is based on ActiveX, which defines
variants as its data types. Variants work well in languages such as Visual
Basic that are not strongly typed. Because LabVIEW is strongly typed,
you must use the Database Variant To Data function to convert the variant
data to a LabVIEW data type before you can display the data in standard
indicators such as graphs, charts, and LEDs.

Chapter 5 Performing Standard Database Operations

Database Connectivity Toolkit User Manual 5-4 ni.com

Figures 5-6 and 5-7 show the front panel and block diagram for a VI that
reads all data from a database table and then converts the data to appropriate
data types in LabVIEW. In Figure 5-6, notice that the fourth column of data
that does not display properly in either Microsoft Access or the variant is
now displayed in a waveform graph.

Figure 5-6. Front Panel Showing How to Read and Convert Data from a Database Table

Figure 5-7. Block Diagram Showing How to Read and Convert Data
from a Database Table

Chapter 5 Performing Standard Database Operations

© National Instruments Corporation 5-5 Database Connectivity Toolkit User Manual

You can use the table input of the DB Tools Select Data VI to read data
from more than one table in a database. Figure 5-8 shows how you can use
a comma-delimited string to specify multiple table names. The data array
includes all rows and columns from both tables in the order they appear in
the table string.

Figure 5-8. Specifying Multiple Database Tables for Reading Data

Limiting Data to Read
If you are reading data from a large table or set of tables, it might take
several seconds to return all the data. There is no limit to the size of the
database table you can read other than your computer resources, memory,
and speed. Read only the necessary fields or perform an SQL query to limit
the amount of information to read into LabVIEW at one time. Figure 5-9
shows how you can use the columns string array to specify which columns
to read and limit the returned data.

Figure 5-9. Specifying Column Names for Reading Data

In Figure 5-9, only the testid and pass fields are returned from a table
named testdata. You can limit the returned data further by specifying
conditions using the optional clause string. Figure 5-10 shows how you
can limit the results from the previous example by returning the testid
and testdate fields for the records where the pass field equals TRUE.

Chapter 5 Performing Standard Database Operations

Database Connectivity Toolkit User Manual 5-6 ni.com

Figure 5-10. Specifying Conditions for Reading Data

The statement where pass='true' is part of an SQL query. Refer to one
of the SQL references listed in the Related Documentation section of this
manual for information about creating an SQL query.

Note If you receive an error while using the DB Tools Select Data VI, either a specified
field in the columns string array does not exist in the table, or that column name contains
characters such as a space, -, \, /, or ?. Do not use these characters when naming tables in
a database. However, if an existing database contains such characters, enclosing the
column name in double quotes often solves the problem.

Creating and Deleting Tables
Use the DB Tools Create Table VI and the DB Tools Drop Table VI to
create or delete tables in a database. Use the DB Tools Open Connection
VI to connect to a database and then use the DB Tools Create Table VI or
the DB Tools Drop Table VI to perform the desired operation. Use the DB
Tools Close Connection VI to end communication with the database.
Figure 5-11 shows how you can create a new table with these VIs.

Chapter 5 Performing Standard Database Operations

© National Instruments Corporation 5-7 Database Connectivity Toolkit User Manual

Figure 5-11. Creating a Database Table

Remember that when you set the create table? input of the DB Tools Insert
Data VI to TRUE, this VI creates the specified table if it does not already
exist. The DB Tools Insert Data VI actually uses the DB Tools Create Table
VI as a subVI to create a table. You also can use the DB Tools Create Table
VI at the highest level if you want more control over the database fields
such as specifying column names, data types, and whether to allow NULL
values.

The size parameter affects only the string data type. If you use the default
size of 0 for a string, the maximum size for a string is defined by the
specified provider.

Figure 5-12 shows how to use the DB Tools Drop Table VI to delete a table
from a database.

Figure 5-12. Deleting a Database Table

Chapter 5 Performing Standard Database Operations

Database Connectivity Toolkit User Manual 5-8 ni.com

Using the Database Connectivity Toolkit Examples
The Database Connectivity Toolkit provides several examples that
demonstrate how to perform common database operations with the
Database VIs. These examples use a UDL called LabVIEW.udl to link to
a Microsoft Access database named LabVIEW.mdb.

Using the Examples with Other Databases
You can use the Database Connectivity Toolkit example VIs by
modifying the LabVIEW.udl file. Double-click this UDL file in the
labview/examples/database directory to display the Data Link
Properties dialog box. You then can select a different provider and set the
connection properties for your DBMS. The default values for some of the
example VIs assume the presence of a particular table in the database from
which to read data or to which to add data. You must modify the example
to fit the table names, column names, and data types required.

Using the Examples without a Database
You do not need to have MS Access or any other database installed to use
the Database Connectivity Toolkit examples. If you run the examples with
their default values, the data is read from or written to the LabVIEW.mdb
file even if you do not have Microsoft Access installed. If you want to
create a new database file to write data to and read data from, you can copy
and rename the LabVIEW.mdb file and use the DB Tools Drop Table VI to
remove the existing tables. You then can use the DB Tools Create Table VI
to create new tables specific to the application.

© National Instruments Corporation 6-1 Database Connectivity Toolkit User Manual

6
Using the Database Connectivity
Toolkit Utility VIs

Use the Utility VIs for a variety of operations, including getting table and
column information, getting and setting database properties, formatting
data and time data, performing database transactions, and writing and
reading data files. Refer to the LabVIEW Help for more information about
using these VIs.

Getting Table and Column Information
Sometimes you must work with databases created by other users or groups,
and you are not familiar with the structure of the database. You can use the
DB Tools List Tables VI to determine what tables exist in a particular
database. Use the DB Tools List Columns VI to return an array of column
or field names in a table and to return information about the data type and
size of each field. Figures 6-1 and 6-2 show how to use these Utility VIs to
get information about a database.

Figure 6-1. Front Panel Showing How to Get Database Information

Chapter 6 Using the Database Connectivity Toolkit Utility VIs

Database Connectivity Toolkit User Manual 6-2 ni.com

Figure 6-2. Block Diagram Showing How to Get Database Information

If you want to get information about all fields in all tables, you can place
the DB Tools List Columns VI into a For Loop instead of using the Index
Array function. Refer to Chapter 3, Connecting to a Database, and
Chapter 4, Supported Data Types, for more information about how the
LabVIEW Database Connectivity Toolkit maps the data types from DBMS
to LabVIEW data types.

Getting and Setting Database Properties
You can read or write various database properties using the DB Tools Get
Properties and the DB Tools Set Properties VIs. Both of these VIs are
polymorphic and can accept different types of reference inputs. The exact
properties you can set or read are based on the type of reference you wire
to the reference input. You can use the Connection, Command, and
Recordset Microsoft ActiveX Data Object (ADO) reference object classes
to read and write properties in a database. The Database Connectivity
Toolkit also supports a fourth object class called Command-Recordset to
handle the close relationship between the ADO Recordset and Command
objects.

Chapter 6 Using the Database Connectivity Toolkit Utility VIs

© National Instruments Corporation 6-3 Database Connectivity Toolkit User Manual

ADO Reference Classes
Table 6-1 describes the purpose of each object class as it relates to the
Database Connectivity Toolkit.

Be careful what references you wire from one VI to the next. You might
obtain unexpected results when you wire a different type of reference than
expected to the input of a VI. Refer to the LabVIEW Help for more
information about the reference types used for VI inputs and outputs.

Table 6-1. Database Connectivity Toolkit Object Classes

Object Class Description

Connection Use this class to define the database connection parameters, such as the
OLE DB provider, connection string, and default database. After you
create a Connection reference, delete it with the DB Tools Free
Object VI.

Command Use this class to execute commands and capture parameters returned
from stored procedures. Create a Command reference by first creating
a Connection reference and then calling the DB Tools Create
Parameterized Query VI. You can get or set properties related to the
command or the parameters associated with the command. After you
create a Command reference, delete it with the DB Tools Free
Object VI.

Recordset Use this class to manipulate data. Create a Recordset reference by first
creating a Connection reference and then calling the DB Tools Execute
Query VI. You can get or set properties related to column information,
the number of records available, the beginning or end of file markers,
and the type of cursor used. After you create a Recordset reference,
delete it with the DB Tools Free Object VI.

Command-Recordset Use this class for situations where commands and recordsets are used
together, such as SQL queries. Create a Command-Recordset reference
by first creating Connection and Command references and then calling
the DB Tools Execute Query VI. You can get or set all the properties
available to the Command and Recordset references. After you create a
Command-Recordset reference, delete it with the DB Tools Free
Object VI.

Chapter 6 Using the Database Connectivity Toolkit Utility VIs

Database Connectivity Toolkit User Manual 6-4 ni.com

Database Properties
The list of available properties for a database changes not only with the
reference type but also with the data provider. Each OLE DB data provider
supports different properties for each of the ADO class types. Also, not all
OLE DB developers are required to implement properties in the same way.
If you use a particular property with one database, that same property might
not work in the same way for another database. Some properties are
read-only and you cannot set them. Refer to the LabVIEW Help for more
information about specific property values.

Formatting Date and Time
You can write time stamp data directly to a database using the Time Stamp
control. You also can use the DB Tools Format Datetime Str VI to format
a LabVIEW date/time string so that other Database VIs recognize the string
as a separate data type. Figure 6-3 shows how to use the DB Tools Format
Datetime Str VI to send a time stamp to the second field of the testdata
table.

Figure 6-3. Writing Date and Time to a Database

The first version of this VI, shown in Figure 5-2, Block Diagram Showing
How to Write Data to a Database Table, writes the date and time to the
database as a text string because LabVIEW recognizes date and time in this
format. Figure 5-3 shows the corresponding Datasheet View in Microsoft
Access. However, the Design View for the table in Figure 5-3 shows Field
col1 as a text data type. Figure 6-4 shows the data type for the table created
by the block diagram in Figure 6-3 as Date/Time.

Chapter 6 Using the Database Connectivity Toolkit Utility VIs

© National Instruments Corporation 6-5 Database Connectivity Toolkit User Manual

Figure 6-4. Database Table with Date/Time Data

You read this data back into LabVIEW in the same way as described in the
Reading Data from a Database section of Chapter 5, Performing Standard
Database Operations. You treat the date/time data as a string.

Refer to the Working with Date/Time Data Types section of Chapter 4,
Supported Data Types, for more information about the date/time data type.

Performing Database Transactions
Protecting the integrity of a database is often difficult. Multiple users can
have access to a single database at the same time, and each user can change
the data. You can use the DB Tools Database Transaction VI, as shown in
Figure 6-5, to specify when to actually perform, or commit, a database
operation and when to return to the previous state of, or roll back, the
database operation.

Figure 6-5. Prompting to Commit or Roll Back Database Changes

Chapter 6 Using the Database Connectivity Toolkit Utility VIs

Database Connectivity Toolkit User Manual 6-6 ni.com

Figure 6-5 shows how to open a database connection, start a transaction,
create a table, prompt the user to either commit or roll back the transaction,
and close the database connection. If the user selects to commit the
changes, the table is created as specified by the column information
cluster. If the user selects to roll back the changes, the table is not created.
You can use a similar method to protect the data in database tables. You can
group operations that belong together into a single transaction and commit
the transaction when you are finished or roll back the transaction if an error
occurs. You also can use locking to determine who has access to a database
during a transaction.

Locking Transactions and Setting Isolation Levels
Locking is an important activity in multi-user database systems where
different users have access to the same data at the same time. Without data
locking, more than one user can modify the same record at the same time,
possibly causing data inconsistencies. Locking allows concurrent database
access while minimizing the various problems such access can cause.

Isolation levels represent different locking strategies. The higher the
isolation level, the more complex the locking strategy is and the better it is
at preventing data inconsistencies. The following data inconsistencies are
examples of what different isolation levels try to prevent:

• Dirty reads—User 1 modifies data while user 2 uses that same data
before user 1 can commit the changes. User 2, therefore, uses incorrect
data.

• Non-repeatable reads—User 1 reads records while user 2 modifies
records. User 1 rereads the records and finds that a record has changed
or been deleted.

• Phantom reads—User 1 reads records while user 2 adds records.
User 1 rereads the records and finds additional records.

At the lowest level of isolation, all the problems mentioned previously can
occur. At the highest level of isolation, none of these problems can occur.
Different databases support the following different isolation levels:

• Chaos—(Lowest level) Transactions are not safe from each other.
One transaction might overwrite another.

• Read Uncommitted—Locks are obtained on modifications only and
held to the end of the transaction. Reading does not involve any
locking. Dirty reads, non-repeatable reads, and phantom reads are all
possible.

Chapter 6 Using the Database Connectivity Toolkit Utility VIs

© National Instruments Corporation 6-7 Database Connectivity Toolkit User Manual

• Read Committed—Locks are obtained on reading and modification,
but locks are released after reading and held until the end of the
transaction for modifications. This transaction cannot see changes
made by other transactions until they are committed. Dirty reads are
not possible, but non-repeatable reads and phantom reads are possible.

• Repeatable Read—Locks are obtained on reading and modifications.
Locks are held until the end of the transaction for both reading and
modifying records. Locks on non-modified access are released after
reading. You do not see any changes in records without re-querying the
database. Dirty reads and non-repeatable reads are not possible, but
phantom reads are possible.

• Serializable—(Highest level) All read or modified data is locked until
the end of the transaction. The transaction occurs in complete
isolation. Dirty reads, non-repeatable reads, and phantom reads are not
possible.

When you choose a higher isolation level, you improve the locking strategy
but have less user concurrency.

The DB Tools Database Transaction VI contains an optional input for
setting the isolation level used for a transaction. You need to set this value
only if other transactions might be pending at the same time. The VI in
Figure 6-6 uses the isolation level parameter of the DB Tools Database
Transaction VI to specify an isolation level for the transaction.

Figure 6-6. Selecting the Isolation Level for a Transaction

Chapter 6 Using the Database Connectivity Toolkit Utility VIs

Database Connectivity Toolkit User Manual 6-8 ni.com

Writing and Reading Data Files
You can use the File I/O VIs and functions to write database data to a file
just as you do with any other data in LabVIEW. You also can use the DB
Tools Save Recordset To File VI to write database data to a file. This VI
saves the data as well as the structure and properties of the database
recordset. Figure 6-7 shows how you can write recordset data to a file.

Figure 6-7. Writing Recordset Data to File

The DB Tools Save Recordset To File VI requires a recordset reference
input, which you can generate with the DB Tools Execute Query VI. The
DB Tools Execute Query VI executes an SQL query. If you specify a table
name as the SQL query input of the DB Tools Execute Query VI, the query
includes all the information in that table. The recordset reference references
the results, passes them to the DB Tools Save Recordset To File VI, and
writes them to file. The DB Tools Free Object VI releases the recordset
reference, and the connection to the database is closed.

The DB Tools Save Recordset To File VI saves recordset data in one of the
following formats:

• Extensible Markup Language (XML)

• Advanced Data TableGram (ADTG)

ADTG format is a proprietary Microsoft binary format. ADTG has the
advantage of being a compact binary format that results in much smaller
files written faster than if you use XML format.

Chapter 6 Using the Database Connectivity Toolkit Utility VIs

© National Instruments Corporation 6-9 Database Connectivity Toolkit User Manual

Persisting data to files in the XML and ADTG formats is a feature of ADO
and OLE DB and not a special feature of the Database Connectivity
Toolkit. You can read data back into LabVIEW from one of these files using
the DB Tools Load Recordset From File VI, as shown in Figure 6-8.

Figure 6-8. Persisting Data from File

The DB Tools Load Recordset From File VI returns a recordset reference
when it opens the specified file. You then can use any VI from the Database
Connectivity Toolkit that accepts a recordset reference to perform
operations on that data. In Figure 6-8, the DB Tools Fetch Recordset Data
VI returns the recordset data as a two-dimensional array of variants. The
DB Tools Free Object VI releases the recordset reference and closes the
database connection.

© National Instruments Corporation 7-1 Database Connectivity Toolkit User Manual

7
Performing Advanced Database
Operations

You can use the Advanced VIs to perform advanced database operations
such as executing SQL statements and fetching data. Use the Advanced VIs
when you need more control over what is sent to or read from a database.

Executing SQL Statements and Fetching Data
SQL is the language that relational databases use. Common operations you
can perform with SQL include creating and deleting tables, inserting data
into databases, querying databases for particular recordsets, and
manipulating data in tables. Refer to any of the SQL resources listed in the
Related Documentation section of this manual for more information about
SQL. This section describes how you can use SQL statements with the
LabVIEW Database Connectivity Toolkit and how you can fetch the data
resulting from an SQL query.

Use the DB Tools Execute Query VI to send an SQL string to a database,
as shown in Figure 7-1. You then can use the DB Tools Fetch Element Data
VI, the DB Tools Fetch Next Recordset VI, or the DB Tools Fetch
Recordset Data VI to return the results of a query.

Figure 7-1. Fetching Query Results

The SQL string does not have to specify only a query. You can enter any
SQL statement in the SQL string. You also do not need to specify a string
if you pass a Command reference to the DB Tools Execute Query VI. When
the DB Tools Execute Query VI receives a Command reference input, the

Chapter 7 Performing Advanced Database Operations

Database Connectivity Toolkit User Manual 7-2 ni.com

VI executes the previously created SQL query. You can use the DB Tools
Create Parameterized Query VI to create a Command reference.

The SQL query string shown in Figure 7-1 asks for all records in the
testdata table where the fifth field contains a TRUE value. The DB Tools
Fetch Recordset Data VI returns a two-dimensional array of variants for
which all tests passed. Refer to Chapter 5, Performing Standard Database
Operations, for more information about converting variant data to
LabVIEW data types. Because the DB Tools Execute Query VI creates a
Recordset reference, you then must use the DB Tools Free Object VI to
release the Recordset reference value.

The DB Tools Fetch Recordset Data VI returns all records from a query
such as the one shown in Figure 7-1.

Note A record is a single row of data and a recordset is a collection of records, or multiple
rows, from a database table.

If you know this query will return a large amount of data or you want to
retrieve information from only one record, you can use the DB Tools Fetch
Element Data, as shown in Figure 7-2.

Figure 7-2. Fetching Query Results from One Record

The DB Tools Fetch Element Data VI returns a value from a single field.
You can specify the field, or column, either by a numerical value, as shown
in Figure 7-2, or by a string specifying the column name. You also must
specify the data type because the DB Tools Fetch Element Data VI uses the
Database Variant To Data function.

Chapter 7 Performing Advanced Database Operations

© National Instruments Corporation 7-3 Database Connectivity Toolkit User Manual

Notice the SQL query used in Figure 7-2. This query is an example of an
SQL inner join operation. An inner join operation combines the fields of
several tables through a common value or expression. The records in the
testdata and testdata2 tables are combined for all the tests where both
tables contain failed tests.

Whereas the DB Tools Fetch Recordset Data VI returns all records that
satisfy an SQL query, the DB Tools Fetch Element Data VI returns an
element from the first record that satisfies the query. Use the VIs described
in the Navigating Database Records section of this chapter to navigate
through the resulting records. Also, some SQL queries, such as stored
procedures, return multiple recordsets. Use the DB Tools Fetch Next
Recordset VI to read each recordset.

Note Not all databases support queries that return multiple recordsets. The inner join
statement in Figure 7-2 returns a single recordset that happens to contain the results from
multiple tables. Therefore, the recordset might contain several records, or rows, where the
columns from multiple tables have been joined.

Navigating Database Records
Operations in a relational database act on a complete set of rows. The
recordset returned by an SQL SELECT statement consists of all rows that
satisfy the conditions of the statement. Applications, especially interactive
and online applications, sometimes cannot work effectively with the entire
recordset as a unit. Use cursors to allow applications that cannot work with
the entire recordset as a unit to work with one row at a time.

Note The Database Connectivity Toolkit does not require you to know about cursors in
order to use them. However, the following information can help advanced users who want
to have more control over their applications.

Using Cursors
A cursor is a placeholder that points to a specific record in a recordset. A
cursor keeps track of the position in the recordset and allows you to perform
multiple operations row by row against a recordset, with or without
returning to the original table. Every cursor uses temporary resources to
hold its data. These resources can be memory, a disk paging file, temporary
disk files, or even temporary storage in the database. Cursors can reside in
one of the following two locations:

• Client-side cursor—The temporary storage resources are located on
the client computer. In addition, the client receives the entire database

Chapter 7 Performing Advanced Database Operations

Database Connectivity Toolkit User Manual 7-4 ni.com

recordset across the network. Client-side cursors lead to very quick
database operations because everything happens locally on the client
machine. However, when you work with large databases, a client-side
cursor can be extremely expensive in time and memory use because the
client machine must receive all data from the server. Also, only the
static cursor type is supported by client-side cursors. Refer to the
Cursor Types section of this chapter for more information about cursor
types.

• Server-side cursor—The temporary storage resources are located on
the database server machine. The server-side cursor returns only the
requested data over the network. Server-side cursors provide better
performance than the client-side cursor when you work with large
databases or in situations where excessive network traffic is a problem.
You have a choice of four different cursor types when you use a
server-side cursor.

The Database Connectivity Toolkit uses only server-side cursors because
they offer more flexibility and because they provide better performance for
large amounts of data.

Cursor Types
Although you can use only a server-side cursor with the Database
Connectivity Toolkit, you do have a choice of server-side cursor types. The
type of cursor used by your application to navigate the recordset affects the
ability to move forward and backward through the rows in a recordset,
sometimes called scrollability. Scrollability adds to the time and resources
necessary to use the cursor. Use the simplest cursor that provides the
required data access and only change the cursor type if you absolutely need
the added functionality. Set the cursor type by creating a cursor type
constant for the DB Tools Execute Query VI and then selecting from the
choices, as shown in Figure 7-3.

Note Not all data providers or databases support all the cursor types shown in Figure 7-3.
For example, the Jet 4.0 OLE DB Provider for Microsoft Access does not support dynamic
cursors. If you request a dynamic cursor, the provider returns a static cursor that is not
correctly implemented.

Chapter 7 Performing Advanced Database Operations

© National Instruments Corporation 7-5 Database Connectivity Toolkit User Manual

Figure 7-3. Possible Cursor Types

The following cursor types are available:

• Forward-only—(Default) This cursor permits only forward
movement through the recordset. Any changes made to the database by
other users during navigation will not be seen. Forward-only cursors
are dynamic because detection of changes occurs as the current row is
processed. This is a high-performance cursor that uses the least
resources.

• Keyset—This cursor allows forward and backward navigation. You
can see records added by other users, but records deleted by others will
not be removed from view.

• Dynamic—This cursor allows forward and backward navigation. You
can see all changes made, both locally and by other users, to the
database. Use the dynamic cursor if your application must detect all
concurrent updates made by other users.

• Static—This cursor allows forward and backward navigation with no
ability to see any changes made by other users during navigation. The
static cursor always displays the result set as it was when the cursor
was first opened. Use the static cursor if your application does not need
to detect data changes and requires scrolling.

Choose a cursor depending on whether you need to change or simply view
the data. If you just need to scroll through a set of results but not change
data, use a forward-only or static cursor. If you have a large result set and
need to select just a few rows, use a keyset cursor. If you want to
synchronize a result set with recent adds, changes, and deletes by all
concurrent users, use a dynamic cursor.

Chapter 7 Performing Advanced Database Operations

Database Connectivity Toolkit User Manual 7-6 ni.com

Navigating Recordsets
Use the DB Tools Move To Next Record VI, the DB Tools Move To
Previous Record VI, and the DB Tools Move To Record N VI to navigate
the results of a database query. Figures 7-4 and 7-5 show how you can
scroll forward and backward through a recordset using a static cursor.

Figure 7-4. Scrolling through a Recordset Using a Static Cursor

In Figure 7-4, the DB Tools Open Connection VI opens the connection to
a database. The DB Tools Execute Query then opens a table and specifies a
static cursor. Usually, you use the DB Tools Execute Query to send an SQL
statement to a database. However, if you send the table name to this VI, the
VI returns a recordset reference to all the records in that table. The DB
Tools Get Properties VI returns the beginning of file (BOF) and the end of
file (EOF) markers to make sure that the table contains records.

The front panel of the VI shown in Figure 7-4 contains two buttons on the
panel labeled Next Record and Previous Record. Clicking the Next
Record button calls the DB Tools Move To Next Record VI, and the DB
Tools Get Properties VI then reads the EOF property. If the end of file is
reached, the DB Tools Move To Previous Record VI is called, and the
cursor then points to the last record in the table.

Chapter 7 Performing Advanced Database Operations

© National Instruments Corporation 7-7 Database Connectivity Toolkit User Manual

Figure 7-5 shows what happens when you click the Previous Record
button.

Figure 7-5. Navigating to the Previous Record in a Recordset

The VI in Figure 7-5 calls the DB Tools Move To Previous Record VI, and
then the DB Tools Get Properties VI reads the BOF property. If the
beginning of file is reached, the DB Tools Move To Next Record VI is
called, and the cursor then points to the first record in the table. Notice that
you need to use the static cursor type in these examples because you are
scrolling forward and backward in the recordset.

Chapter 7 Performing Advanced Database Operations

Database Connectivity Toolkit User Manual 7-8 ni.com

Figure 7-6 shows how to use the DB Tools Move To Record N VI to display
the information from any record in a table when you know the record
number. The first record in the recordset has a value of zero.

Figure 7-6. Navigating to the nth Record in a Recordset

In Figure 7-6, the DB Tools Get Properties VI returns the number of
records in the table and displays that value in the panel. You also can use
this value to make sure the user does not enter a value for Get # that is not
a valid record number. The VI ends with an error message if you ask for a
record number that does not exist. The static cursor allows scrollability
through the entire recordset.

Chapter 7 Performing Advanced Database Operations

© National Instruments Corporation 7-9 Database Connectivity Toolkit User Manual

Using Parameterized Statements
Parameterized statements allow you to specify an SQL statement once but
vary the parameters, such as the matching criteria of a WHERE clause, over
time. Prepare a parameterized statement using the DB Tools Create
Parameterized Query VI, as shown in Figure 7-7.

Figure 7-7. Writing Parameterized Data to a Table

You can create the parameters input of the DB Tools Create Parameterized
Query VI either by creating a control on the panel or by creating a constant
on the block diagram. The parameters input is an array of clusters where
each array value represents a column or field in the database table. Each
parameter cluster contains the following four values:

• parameter name—Leave this string empty if the parameter is not
named.

• type—Specify whether the parameter data type is string, long, single,
double, date/time, or binary.

• direction—Specify whether the parameter is an input, output,
input/output, or return value.

Chapter 7 Performing Advanced Database Operations

Database Connectivity Toolkit User Manual 7-10 ni.com

• value—Specify the initial value of the parameter. You also can leave
this value as an empty variant and set the value later with the DB Tools
Set Parameter Value VI, as shown in Figure 7-7.

Figure 7-7 shows the SQL statement insert into testresults
(channel, dateval, binval) values (?, ?, ?). This statement
indicates that a table named testresults already exists and contains
three fields, or columns, named channel, dateval, and binval. The
question marks represent parameters to be set later in the data acquisition
loop. The parameters input specifies the names of the parameters and their
data types. These data types must match the data types as defined by the
testresults database table. The DB Tools Create Parameterized Query
VI returns an error if the number of parameters described in the SQL
statement do not match the number of array elements in the parameters
input, if the column names in the SQL statement do not match the column
names in the testresults database table, or if the data types defined in
the parameters array cluster do not match the data types in the
testresults database table.

The VI in Figure 7-7 calls the DB Tools Open Connection VI and the
DB Tools Create Parameterized Query VI before the data acquisition loop
begins. Inside the acquisition loop, the DB Tools Set Parameter Value VI
writes the data to the database. Notice that you can specify the parameter
index input as either a string specifying the parameter name or as a number
representing the index. After setting all the parameter values, the DB Tools
Execute Query VI executes the statement. The DB Tools Free Object VI
and the DB Tools Close Connection VI release the various reference values
and close the database connection.

The example in Figure 7-7 can be viewed in a different way by taking the
Microsoft ActiveX Data Object (ADO) object reference types into account.
The DB Tools Open Connection VI creates a Connection reference. The
DB Tools Create Parameterized Query VI uses the Connection reference
and creates a Command reference. The Command reference passes through
the DB Tools Set Parameter Value VI, and the DB Tools Execute Query VI
changes it to a Command-Recordset reference. The first DB Tools Free
Object VI takes the Command-Recordset reference and returns a
Command reference. The second DB Tools Free Object VI takes the
Command reference and returns a Connection reference. Last, the DB
Tools Close Connection VI releases the Connection reference. Each time an
ADO object reference opens, you must call the DB Tools Free Object to
close it. Refer to the ADO Reference Classes section of Chapter 6, Using
the Database Connectivity Toolkit Utility VIs, for more information about
ADO object reference classes.

Chapter 7 Performing Advanced Database Operations

© National Instruments Corporation 7-11 Database Connectivity Toolkit User Manual

You can use parameters in any kind of SQL statement. However, not all
databases or data providers support parameterized statements. Refer to
your ADO, data provider, or database documentation for more information
about what features are supported.

Using Stored Procedures
A stored procedure is a precompiled collection of SQL statements and
optional control-of-flow statements, similar to a macro. Each database and
data provider supports stored procedures differently. For example, you can
create a stored procedure using the Jet 4.0 provider, but Access does not
support stored procedures through its usual user interface. A stored
procedure created in one DBMS might not work with another. You can use
the Database Connectivity Toolkit to create and run stored procedures, both
with and without parameters.

Although using stored procedures is an advanced task, stored procedures
offer the following benefits to your database applications:

• Performance—Stored procedures are usually more efficient and
faster than regular SQL queries because SQL statements are parsed for
syntactical accuracy and precompiled by the DBMS when the stored
procedure is created. Also, combining a large number of SQL
statements with conditional logic and parameters into a stored
procedure allows the procedures to perform queries, make decisions,
and return results without extra trips to the database server.

• Maintainability—Stored procedures isolate the lower-level database
structure from the LabVIEW application. As long as the table names,
column names, parameter names, and types do not change from what
is stated in the stored procedure, you do not need to modify the
procedure when changes are made to the database schema. Stored
procedures are also a way to support modular SQL programming
because after you create a procedure, you and other users can reuse that
procedure without knowing the details of the tables involved.

• Security—When creating tables in a database, the Database
Administrator can set EXECUTE permissions on stored procedures
without granting SELECT, INSERT, UPDATE, and DELETE
permissions to users. Therefore, the data in these tables is protected
from users who are not using the stored procedures.

Chapter 7 Performing Advanced Database Operations

Database Connectivity Toolkit User Manual 7-12 ni.com

Creating Stored Procedures
You usually create stored procedures in the DBMS environment. Some
DBMSs, such as SQL Server, contain a library of system stored procedures
that perform common administrative tasks with databases. The names of
these stored procedures begin with sp_. Refer to the documentation for
your DBMS for the exact syntax to use when creating a stored procedure.
You also can use the Database Connectivity Toolkit to create stored
procedures, as shown in Figure 7-8.

Figure 7-8. Creating a Stored Procedure

Figure 7-8 uses the same VIs as you use to perform a typical SQL query.
However, the syntax of the SQL query string is different. The SQL query
string is a stored procedure that calls the show_Dauthors_books query.
The query string specifies the use of three tables in the pubs database. The
procedure joins the authors, titles, and titleauthor tables to create
a list of all the authors whose last name begins with D and a list of the books
they have published. The procedure also arranges the result, where the first
column combines the first and last names and the second column contains
the book title. When the VI runs, it creates a stored procedure that does not
use parameters. The Running Stored Procedures without Parameters
section of this chapter describes how you then can call the stored procedure
using another VI.

Chapter 7 Performing Advanced Database Operations

© National Instruments Corporation 7-13 Database Connectivity Toolkit User Manual

Running Stored Procedures without Parameters
You can run a stored procedure by inserting the name of the procedure as
an SQL query. Figures 7-9 and 7-10 show how you can call the stored
procedure created in Figure 7-8 using the DB Tools Execute Query VI.

Figure 7-9. Front Panel Showing How to Run a Stored Procedure

Figure 7-10. Block Diagram Showing How to Run a Stored Procedure

In Figure 7-10, the DB Tools Execute Query VI sends the name of the
stored procedure. The DB Tools Fetch Recordset Data returns the results
of the stored procedure in a two-dimensional array of variants. The nested
For Loops convert the variants to strings so the results can be displayed in
a LabVIEW table.

Chapter 7 Performing Advanced Database Operations

Database Connectivity Toolkit User Manual 7-14 ni.com

Running Stored Procedures with Parameters
Stored procedures can use variables internally as well as pass parameters
into and out of the procedure. You can use parameters with stored
procedures in two ways. In the first method, you build SQL query strings
that contain the name of the stored procedure with the values embedded at
the appropriate places in the query. For example, assume you want to use
the following stored procedure:

CREATE PROCEDURE AddPart

@part_name char(40),

@part_qty int,

@part_price money,

@part_descr varchar(255) = NULL

AS

INSERT parts (name, qty, price, description)

VALUES (@part_name, @part_qty, @part_price,

@part_descr)

This stored procedure adds a record containing the part name, quantity, unit
price, and description to the table named parts. Figure 7-11 shows the
block diagram that calls this AddPart procedure.

Figure 7-11. Using Parameters with a Stored Procedure

Figure 7-11 shows how you construct the SQL query string using the
Format Into String function. For example, if Part Name is widget,
Quantity is 24, Price is 0.99, and Description is misc parts, the
Format Into String function constructs the following SQL query string:
AddPart 'widget', 24, 0.99, 'misc parts'. The DB Tools
Execute Query VI sends this query to the database just as you would send

Chapter 7 Performing Advanced Database Operations

© National Instruments Corporation 7-15 Database Connectivity Toolkit User Manual

any other SQL query. You must know the parameters and data types used
in a stored procedure in order to call it properly from the Database
Connectivity Toolkit.

The second way to use parameters with stored procedures is to use the DB
Tools Create Parameterized Query VI, the DB Tools Set Parameter Value
VI, and the DB Tools Get Parameter Value VI. Figure 7-12 shows how you
can use these three VIs to run the same stored procedure as in Figure 7-11.

Figure 7-12. Using a Parameterized Stored Procedure

The format for this SQL query is slightly different than in the previous
example. The query string shown in Figure 7-12 uses the ODBC method
for calling a stored procedure whereas the previous example used the
Transact SQL (T-SQL) method used by SQL Server. The parameters in the
SQL query string are defined by question marks. The parameters array
must contain as many elements as there are question marks in the query.
You specify the parameter name, data type, direction (input, output,
input/output, or return value), and parameter value in each parameter array
element. You also set the stored procedure? input of the DB Tools Create
Parameterized Query VI to TRUE.

If you do not explicitly state values in the parameters array, use the DB
Tools Set Parameter Value VI, as shown in Figure 7-12. The DB Tools Set
Parameter Value VI is polymorphic and can accept any LabVIEW data type
for the value input. The previous example shows string, integer, and single
values wired to the DB Tools Set Parameter Value VI. You can specify the
parameter index as either a numeral, as shown above, or as the parameter
name defined in the parameters array. After all the parameters are defined,
the DB Tools Execute Query VI runs the parameterized query. The
recordset and command references are freed with the two DB Tools Free
Object VIs, and the database connection is closed.

Chapter 7 Performing Advanced Database Operations

Database Connectivity Toolkit User Manual 7-16 ni.com

The stored procedure examples shown in this section are specifically
written for SQL Server. Oracle uses PL/SQL to create stored procedures.
Although the syntax for PL/SQL is different, you still can create and run
stored procedures for Oracle using the Database Connectivity Toolkit.

© National Instruments Corporation 8-1 Database Connectivity Toolkit User Manual

8
Building Applications

You can build applications or shared libraries that use the LabVIEW
Database Connectivity Toolkit. The Database Connectivity Toolkit
requires some additional options, such as DSN or UDL files, that are not
part of a standard application build routine.

Note Ensure that the target computer to which you want deploy the built application or
shared library contains the Microsoft Data Access Components (MDAC).

Right-click a build specification and select Properties from the shortcut
menu to verify and edit the build specification settings. Be sure to specify
any necessary DSN or UDL files on the Source Files page of the build
specification Properties dialog box. Then click the Build button to build
the application or shared library and to update the project with the build
specification settings.

Using UDLs and DSNs
When you build an application that includes Database VIs, you must
include the UDL and DSN files for the database connection in the
application.

User and system DSNs are applicable only to a particular user or computer.
You must create user and system DSNs manually on the target machine
using the ODBC Data Source Administrator. Refer to the ODBC Data
Source Administrator section of Chapter 3, Connecting to a Database,
for information about the ODBC Data Source Administrator.

If you want to include a UDL in an application, you must add the UDL to
the LabVIEW project that contains your build specification. Right-click a
target, such as the My Computer target, in the Project Explorer window
and select Add»File from the shortcut menu to add a UDL to the project.

After you add the UDL to the project, right-click the application build
specification and select Properties from the shortcut menu to display the
Application Properties dialog box. On the Source Files page, add the

Chapter 8 Building Applications

Database Connectivity Toolkit User Manual 8-2 ni.com

UDL you want to include in the built application to the Always Included
list. You also can include the database itself as an included file.

Note If you build an application or shared library that uses a UDL to access a database,
the path to the database in the application or shared library might be different from the path
to the database in the LabVIEW development environment. Be sure to modify the UDL to
map to the database in the target location before building the application or shared library,
or add code to modify the UDL as part of the initialization of the application.

Using Connection Strings

Rather than including an existing UDL in an application, you also can use
an ODBC connection string with the Microsoft ActiveX Data Object
(ADO) standard. You can modify your application to create a connection
string that works in either the development environment or the target
environment. Refer to the Microsoft Developer Network Web site at
http://msdn.microsoft.com for more information about using and
configuring connection strings in ADO.

Refer to the Using Connection Strings project, located in the
labview\examples\database\EXE directory, for an example of using
a connection string to connect to a database in a built application.

http://msdn.microsoft.com

© National Instruments Corporation A-1 Database Connectivity Toolkit User Manual

A
Technical Support and
Professional Services

Visit the following sections of the award-winning National Instruments
Web site at ni.com for technical support and professional services:

• Support—Technical support resources at ni.com/support include
the following:

– Self-Help Technical Resources—For answers and solutions,
visit ni.com/support for software drivers and updates, a
searchable KnowledgeBase, product manuals, step-by-step
troubleshooting wizards, thousands of example programs,
tutorials, application notes, instrument drivers, and so on.
Registered users also receive access to the NI Discussion Forums
at ni.com/forums. NI Applications Engineers make sure every
question submitted online receives an answer.

– Standard Service Program Membership—This program
entitles members to direct access to NI Applications Engineers
via phone and email for one-to-one technical support as well as
exclusive access to on demand training modules via the Services
Resource Center. NI offers complementary membership for a full
year after purchase, after which you may renew to continue your
benefits.

For information about other technical support options in your
area, visit ni.com/services, or contact your local office at
ni.com/contact.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. To learn more, call your local
NI office or visit ni.com/alliance.

Appendix A Technical Support and Professional Services

Database Connectivity Toolkit User Manual A-2 ni.com

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

	LabVIEW Database Connectivity Toolkit User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction to the Database Connectivity Toolkit
	Chapter 2 OLE DB Providers
	OLE DB Standard
	OLE DB Provider for ODBC
	Figure 2-1. Communication Path between LabVIEW and a Database Using the OLE DB Provider for ODBC

	OLE DB Provider for SQL Server
	Figure 2-2. Communication Path between LabVIEW and an SQL Server Database Using the Native OLE DB Provider

	OLE DB Provider for Jet
	Figure 2-3. Communication Path between LabVIEW and an Access Database Using the Native OLE DB Provider

	OLE DB Provider for Oracle
	Figure 2-4. Communication Path between LabVIEW and an Oracle Database Using the Native OLE DB Provider

	Custom OLE DB Providers

	Chapter 3 Connecting to a Database
	DSNs and Data Source Types
	ODBC Data Source Administrator
	Figure 3-1. ODBC Microsoft Access Setup Dialog Box

	Connecting to Databases Using DSNs
	Figure 3-2. Connecting to an Access Database Using a System DSN
	Figure 3-3. Connecting to an Access Database Using a File DSN
	Figure 3-4. Connecting to an Oracle Database Using a System DSN

	UDLs
	Figure 3-5. Using a Prompt to Create a UDL
	Configuring a UDL
	Connecting to Databases Using UDLs
	Figure 3-6. Connecting to a Microsoft Access Database Using a UDL

	Chapter 4 Supported Data Types
	Data Type Mapping
	Table 4-1. Database Connectivity Toolkit Data Types
	Table 4-2. LabVIEW and the Database Connectivity Toolkit Data Types

	Working with Date/Time Data Types
	Handling NULL Values
	Figure 4-1. Handling of NULLs in Different Formats
	Figure 4-2. Block Diagram Showing How NULLs Are Handled

	Currency and Boolean Data Types
	Figure 4-3. Writing Currency and Boolean Data

	Chapter 5 Performing Standard Database Operations
	Writing Data to a Database
	Figure 5-1. Front Panel Showing How to Write Data to a Database Table
	Figure 5-2. Block Diagram Showing How to Write Data to a Database Table
	Figure 5-3. Database Table Displayed in Microsoft Access

	Reading Data from a Database
	Figure 5-4. Front Panel Showing How to Read Data from a Database Table
	Figure 5-5. Block Diagram Showing How to Read Data from a Database Table
	Figure 5-6. Front Panel Showing How to Read and Convert Data from a Database Table
	Figure 5-7. Block Diagram Showing How to Read and Convert Data from a Database Table
	Figure 5-8. Specifying Multiple Database Tables for Reading Data
	Limiting Data to Read
	Figure 5-9. Specifying Column Names for Reading Data
	Figure 5-10. Specifying Conditions for Reading Data

	Creating and Deleting Tables
	Figure 5-11. Creating a Database Table
	Figure 5-12. Deleting a Database Table

	Using the Database Connectivity Toolkit Examples
	Using the Examples with Other Databases
	Using the Examples without a Database

	Chapter 6 Using the Database Connectivity Toolkit Utility VIs
	Getting Table and Column Information
	Figure 6-1. Front Panel Showing How to Get Database Information
	Figure 6-2. Block Diagram Showing How to Get Database Information

	Getting and Setting Database Properties
	ADO Reference Classes
	Table 6-1. Database Connectivity Toolkit Object Classes

	Database Properties

	Formatting Date and Time
	Figure 6-3. Writing Date and Time to a Database
	Figure 6-4. Database Table with Date/Time Data

	Performing Database Transactions
	Figure 6-5. Prompting to Commit or Roll Back Database Changes
	Locking Transactions and Setting Isolation Levels
	Figure 6-6. Selecting the Isolation Level for a Transaction

	Writing and Reading Data Files
	Figure 6-7. Writing Recordset Data to File
	Figure 6-8. Persisting Data from File

	Chapter 7 Performing Advanced Database Operations
	Executing SQL Statements and Fetching Data
	Figure 7-1. Fetching Query Results
	Figure 7-2. Fetching Query Results from One Record

	Navigating Database Records
	Using Cursors
	Cursor Types
	Figure 7-3. Possible Cursor Types

	Navigating Recordsets
	Figure 7-4. Scrolling through a Recordset Using a Static Cursor
	Figure 7-5. Navigating to the Previous Record in a Recordset
	Figure 7-6. Navigating to the n th Record in a Recordset

	Using Parameterized Statements
	Figure 7-7. Writing Parameterized Data to a Table

	Using Stored Procedures
	Creating Stored Procedures
	Figure 7-8. Creating a Stored Procedure

	Running Stored Procedures without Parameters
	Figure 7-9. Front Panel Showing How to Run a Stored Procedure
	Figure 7-10. Block Diagram Showing How to Run a Stored Procedure

	Running Stored Procedures with Parameters
	Figure 7-11. Using Parameters with a Stored Procedure
	Figure 7-12. Using a Parameterized Stored Procedure

	Chapter 8 Building Applications
	Using UDLs and DSNs
	Using Connection Strings

	Appendix A Technical Support and Professional Services

