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Introduction 
This experiment manual is designed to provide a practical “hands-on”, experiential, lab-based 

component to the theoretical work presented in lectures on the topics typically covered in 

introductory “Signals and Systems” courses for engineering students. 

Whilst it is predominantly focused on all electrical engineering students, this material is not 

exclusively for electrical engineers. With an understanding of differential equations, algebra of 

complex numbers and basic circuit theory, engineering students in general can reinforce their 

understanding of these important foundational principles through practical laboratory course work 

where they see the “math come alive” in real circuit based signals. This provides a foundation for 

further study of communications, control, and systems engineering in general. 

Students take responsibility for the construction of the experiments and in so doing learn from their 

mistakes and consolidate their knowledge of the underpinning theory, which at times is particularly 

abstract and hard to grasp for these early engineering students. They are not constrained by the 

software and need to be systematic in debugging their own systems when results do not meet their 

expectations.  

The common reaction of early students when confronted with “complex analysis” is one of confusion 

and regression to “rote-learning” in order to survive the examination process. This manual has as its 

predominant aim to create real, “hands-on” implementation of the theory, in such a way that the 

student can directly articulate and connect the mathematical abstractions with real world 

implementations. It is a journey of personal discovery where the motto is “why is it so ?” 

The use of “modeling” is the fundamental tool in this, and other NI ELVIS-based EMONA boards (such 

as DATEx, FOTEx and HELEx), and it has been shown that experimenting with scaled models of real 

world systems allows students early-on to get a tangible “feel” for principles that they may later 

utilize in real world commercial workplace environments. As well, students tend to “believe” results 

from “real hardware” rather than from software simulations, and this supports their “learning by 

doing”. 

The authors sincerely hope that students using this equipment and guided by this manual will complete 

with a sense that complex numbers and systems analysis “makes sense” and is somehow more “real” and 

applicable to real world problems. In this way they may successfully use these principles in solutions to 

future problems they will encounter. 

Carlo Manfredini 

Sydney, January 2011 
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Experiment 1 – An introduction to the NI ELVIS II/+ laboratory 

equipment 

Preliminary discussion 
The digital multimeter and oscilloscope are probably the two most used pieces of test equipment 

in the electronics industry. The bulk of measurements needed to test and/or repair electronics 

systems can be performed with just these two devices. 

 

At the same time, there would be very few electronics 

laboratories or workshops that don’t also have a DC Power 

Supply and Function Generator. As well as generating DC 

test voltages, the power supply can be used to power the 

equipment under test. The function generator is used to 

provide a variety of AC test signals. 

 

Importantly, NI ELVIS II has these four essential pieces of 

laboratory equipment in one unit (and others). However, 

instead of each having its own digital readout or display (like 

the equipment pictured), NI ELVIS II sends the information 

via USB to a personal computer where the measurements are displayed on one screen.  

 

On the computer, the NI ELVIS II devices are called “virtual instruments”. However, don’t let 

the term mislead you. The digital multimeter and scope are real measuring devices, not software 

simulations. Similarly, the DC power supply and function generator output real voltages. 

 

As well as the instruments mentioned above, the NI ELVIS II has available eight analogue 

inputs and two analog outputs which can be controlled and written to by our LabVIEW program 

and the input readings processed and displayed on screen. This allows for the creation of many 

more custom "virtual instruments" which may be required in a particular experimental setup. 

 

The experiments in this manual make use of several of the available analogue inputs as well as 

several digital inputs and outputs which, in conjunction with the SIGEx board, are able to 

implement two groups of programmable gain amplifiers for use throughout this manual.  

 

Rather than utilising several independent instruments from the NI ELVIS as does the other 

EMONA plug-in accessory boards (such as EMONA DATEx Telecoms-Trainer and the EMONA 

FOTEx Fiber optics trainer), these instruments are all merged into one full-screen virtual 

instrument for the SIGEx board known as the SIGEx Main soft front panel (SFP). With an easy- 

to-use tabbed layout, each experiment has its requisite instrumentation grouped within tabs by 

experiment. 
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When an NI ELVIS1 unit is connected to a PC it will automatically run the Instrument Launcher 

panel as shown below: 

 

 

 
Figure 1: NI ELVIS II/+ Instrument Launcher panel 

 

This panel gives the user access to each individual instrument. Several of these independent 

instruments are used by SIGEx experiments. These are the FUNCTIONS GENERATOR (FGEN), 

the DYNAMIC SIGNAL ANALYSER (DSA) and at times the SCOPE (Scope).  

 

When using NI ELVIS with the EMONA SIGEx board to conduct signals and systems 

experiments the user will run the SIGEx Main SFP VI shown below: 

 

 
 

Figure 2: SIGEx Main SFP 

 

 

                                                
1 Throughout this manual, NI ELVIS II & II+ are referred to, however the SIGEx board 

and software work equally well on the NI ELVIS I platform, with the NI ELVIS I 

FUNCTION GENERATOR used in manual mode ONLY, and NI ELVIS in BYPASS mode. 
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There are 19 TABS for use with the experiments in this Volume of the manual. 

 

These instruments take their signals directly from the SIGEx board via the  EMONA  

ETT-040 Universal Base Board, into the ELVISmx circuitry, and after processing by LabVIEW 

are displayed on screen as required. 

 

The combination of the LabVIEW programmability of the NI ELVIS unit as well as the numerous 

analog and digital inputs and outputs available make it convenient to create customised 

instrumentation for use in real world hands-on experimentation. The EMONA SIGEx board is a 

good example of this integration of available hardware and the software control. 
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Experiment 2 – An introduction to the EMONA SIGEx 

experimental add-in board for NI ELVIS 

 
Preliminary discussion 
The experiments possible with the EMONA SIGEx board bring together worlds of  

mathematical theory and practical implementation. We are able to explore, in a hands-on 

manner, the representation of physical processes by mathematical models and test and measure 

the benefits and limitations of such models. We explore the complementarity of the time and 

frequency domains and practice thinking and theorizing in both. Through measurements, 

calculations and observations we are able to consolidate our understanding of these domains.  

 

The SIGEx board customizes the instrumentation available on the NI ELVIS to create 

experiment-specific instruments which can be used to create many different circuit structures. 

 

As well, the ability to programmatically control, measure and automate our measurements using 

LabVIEW bring us closer to real-world practices of system control and monitoring. 

Although the principles of being studied date back several centuries their application in real 

world devices is continually being explored and implemented. The instrumentation used has 

changed substantially however the rigorous nature of the mathematical process remains the 

same and is a skill which is best learned in a hands-on manner. 

 

By implementing the many mathematical model and theorems in real hands-on circuit based 

experiments, the student reinforces and actualizes their understanding of these principles to 

create a solid foundation for future learning. 

 

An important skill for the engineer and scientist is the ability to take rigorous and precise 

measurements, often repetitively, in order to study the phenomena at hand. The EMONA SIGEx 

Signals & Systems Experimenter  (ETT-311) provides an abundance of opportunities to learn and 

practice experimental methodology in a variety of related topics which are common ground for 

engineering students of several disciplines. 
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The experiment 
For this experiment you will familiarize yourself with the various instruments available on the 

SIGEx board and how they are used.  

 

It should take you about 10 minutes to read this experiment and explore these functions. 

 

 

Pre-requisites: 

You should have completed the introductory chapter 1 so that you’re familiar with the equipment 

setup and capabilities. 

 

 

Equipment 

 

�  PC with LabVIEW 2009 (or higher) & “Digital Filter Design” toolkit installed 

�  NI ELVIS 2 or 2+ and USB cable to suit 

�  EMONA SIGEx Signal & Systems add-on board 

�  Assorted patch leads 

�  Two BNC – 2mm leads 
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Procedure 

 

Part A – Setting up the NI ELVIS/SIGEx bundle 

 

1. Turn off the NI ELVIS unit and its Prototyping Board switch. 

 

2. Plug the SIGEx  board into the NI ELVIS unit. 

 

Note: This may already have been done for you. 

 

3. Connect the NI ELVIS to the PC using the USB cable. 

 

4. Turn on the PC (if not on already) and wait for it to fully boot up (so that it’s ready to 

connect to external USB devices). 

 

5. Turn on the NI ELVIS unit but not the Prototyping Board switch yet. You should observe 

the USB light turn on (top right corner of ELVIS unit).The PC may make a sound to indicate that 

the ELVIS unit has been detected if the speakers are activated. 

 

6. Turn on the NI ELVIS Prototyping Board switch to power the SIGEx board. Check that 

all three power LEDs are on. If not call the instructor for assistance. 

 

7. Launch the SIGEx Main VI. 

 

8. When you’re asked to select a device number, enter the number that corresponds with 

the NI ELVIS that you’re using. 

 

9. You’re now ready to work with the NI ELVIS/SIGEx bundle. 

 

 

Note: To stop the SIGEx VI when you’ve finished the experiment, it’s preferable to use the 

STOP button on the SIGEx SFP itself rather than the LabVIEW window STOP button at the 

top of the window. This will allow the program to conduct an orderly shutdown and close the 

various DAQmx channels it has opened. 

 

 

 

 

 

 

Ask the instructor to check

your work before continuing.
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EMONA SIGEx board overview 
 

The SIGEx board is a collection of independent circuit blocks which each implement a single 

simple function. No one block is a complete experiment, however several blocks together can 

implement a wide variety of different experiments. The block inputs and outputs are patched 

together with 2 mm patching leads according to the block diagram as documented in this Lab 

Manual or from the many texts available on this topic. 

 

 
 

EMONA SIGEx board layout 

 

This chapter discusses the functionality of each module briefly and further details such as 

specifications are contained  in the EMONA SIGEx User Manual. 

 

 
 

NI ELVIS II/ SIGEx bundle 
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SIGEX board circuit modules 
 

Sequence Generator 

 

 

Limiter 

 

 

RC Network 

 

Rectifier 

 

 

The SEQUENCE GENERATOR provides a source of periodic data 

streams which are output as 5V logic and  bipolar level signals.  

DIP switches allow the selection of 4 different streams. 

A periodic SYNC pulse is output once per frame. 

The module is clocked by a single input logic level clock. This will 

typically come from the PULSE GENERATOR or FUNCTION 

GENERATOR/SYNC outputs. 

 

The state of the DIP switches at any time is displayed on the SIGEx 

SFP along with a description. 

 

 

The LIMITER amplifies an incoming signal with DIP switch selectable 

gain levels and to a fixed level, creating an amplitude limited output 

signal. 

 

It is typically used with bipolar analog sinusoidal signals or bipolar line 

coded data streams. 

 

The RC NETWORK provides R and C elements which can be arranged as 

either an RC circuit which acts as a LPF, or as a HPF. 

 

The elements are floating and one end needs to be connected to GND. 

 

The Rectifier provides half wave rectification of an incoming signal with 

a non ideal diode component which has a forward voltage drop. 

 

This is typically used with sinusoidal signals. 
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Multiplier 

 

Integrate & Dump/Hold 

 

Baseband Low Pass Filter 

 

PCM Encoder 

 

PCM Decoder 

 

 

The Multiplier provides four quadrant multiplication of two analog input 

signals. Its overall gain is approximately unity and it is used to model 

any multiplication process that may occur in a block diagram.  

 

Both Integrate and Dump as well as Integrate and Hold is available in 

this circuit block. Usually clocked by the bit clock of an incoming 

sequence, it is used to integrate over a single period of a waveform in 

correlation and filtering functions.  

 

This LPF has a 4th order Butterworth response and serves both as a 

“system under investigation” and for general filtering functions.  

 

 

This module implements PCM encoding of a single analog signal. It 

outputs an 8 bit frame along with a periodic Frame Sync pulse. 

 

It can be used with both DC signals as well as sinusoids and serves to 

allow specific investigation of the encoding process.  

 

It has a maximum sampling rate of 2.5ksps ( 20kbps PCM data stream), 

and so can be used with signal frequencies below the Nyquist limit of 

1.25kHz. 

 

This module implements PCM decoding of an 8 bit PCM digital data 

stream from the PCM Encoder.  

 

The Frame Sync is necessary to achieve synchronization and there is no 

reconstruction filter on the output to allow investigation of quantization 

issues.  
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Tuneable Low Pass Filter 

 

Integrators 

 

Unit delays with Sample & Hold 

 

 

This module is an adjustable LPF. It implements a 8th order Elliptic 

filter with an adjustable corner frequency. The output signal level is 

also adjustable, and it can accept analog and TTL level digital signals.  

 

There is no anti-aliasing filter on the input so users need to be aware of 

the bandwidth of their incoming signal. 

 

 

 
 

These 3 independent circuits are simple integrator circuits with a common DIP-switch- 

selectable integration rate. They are used for continuous time integration ( unlike the 

Integrate & Dump/Hold unit which operates over a single period only.)  

 

They are used in Laplace domain experiments. 

The DIP switch settings is displayed in the SIGEx SFP along with the approximate integration 

rate. 

 
 

The Sample & Hold is an analog sampler circuit which holds the sampled value for a single period 

of the incoming TTL level clock signal. The unit delays are similar in that they hold the incoming 

analog value at their input for a single clock period. 

 

All 4 units share a common clock signal.  
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Triple and dual input adders 

 

 

 
 

There are 3 adder sections. Two identical triple input adder sections and a dual input adder. 

The triple input adders, a & b, have adjustable gains. These gains are adjusted via the SIGEx 

SFP and are typically used to implement the taps in feedback and feedforward systems.  

 

The dual input adder has unity gain and is used for general purpose addition. 

 

The GAIN ADJUST knob is read by the SIGEx SFP software and can be used to manually 

adjust adder gains.  
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NI ELVIS functions blocks available on the SIGEx board 
 

Pulse generator / Digital out 

 

Function generator 

 

Analog out 

 

 

This module makes available the built in Pulse Generator from NI ELVIS 

which has a very broad range of frequency and duty cycle control. This 

is controlled from the SIGEx SFP and is usually used to provide digital 

clock signals to experiments. 

 

D-OUT-0 is a single digital output line which is available but currently 

unused in experiments. 

 

This module makes available the built in Function Generator from NI 

ELVIS which is a multifunction generator, with variable signal types, 

variable amplitude and variable frequency. It is controlled via its own 

instrument panel which available from the NI ELVIS Instrument 

Launcher panel. 

  

 

This module makes available the built in dual analog outputs from the 

DACs. 

 

These outputs are controlled from various SIGEx experiment TABs and 

can be modified to create any periodic waveforms required. 
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EMONA SIGEx Soft Front Panel (SFP) descriptions 
 

The EMONA SIGEx Soft Front Panel serves both to control elements of the SIGEx hardware, 

as well as provide experiment specific measuring instrumentation in a handy, experiment-per- 

TAB based layout. 

 

The layout is arranged so as to fit on screen easily with all parameters in view. 

 

The source code VI’s are provided on the SIGEx CD so that users can modify and customize the 

SFP arrangement and functionality if required. 

 

SIGEx is designed for university and college users and access to the LabVIEW “Digital Filter 

Design” toolkit is expected for full functionality to be available. 

 

 
 

EMONA SIGEx Soft Front Panel 

 

ADDER gain entry panel 

 

The triple input adders have variable gains which are set from the entry controls on the SFP. 

These gains can also be set programmatically as is done in several experiment TABS. The 

onscreen gains are transferred to the hardware automatically and continuously. 

 

Coefficient selector panel 

 

The position of the onboard GAIN ADJUST knob can be interpreted as a range of values set to 

a particular adder gain control. The radio button panel is used to select a particular gain control, 

or none. The center value and step size of each increment from the GAIN ADJUST knob must 



 

©  Emona Instruments          Experiment 2 – An introduction to the SIGEx experimental add-in board V1.0 2-12 

also be set. This allows either a broad range of values or a narrow focused range of values to be 

adjustable via the knob. 

 

Pulse Generator panel 

 

In the panel the frequency and duty cycle of the PULSE GENERATOR block can be set. As well 

the spare D-OUT-0 line can be toggled. 

 

SG Sequence type and Integrator Gain readouts 

 

These readouts mimic the selection of the onboard DIP switches and the text briefly describes 

the signal type selected for convenience. Details of signals in the SIGEx User Manual. 

 

Analog OUT viewer 

 

This graph indicator displays the actual signal currently being output from the ANALOG OUT 

terminals from the DACs. These vary depending on the experiment selected, and this readout is 

convenient when SCOPE channels are being used for other signals. 

 

SCOPE Trig level, trig slope, triggered LED, trig select, timebase etc 

 

These controls are for the SFP scopes embedded in various experiment TABs.  

Trig level sets the voltage level the trigger looks for. Usually set to 0 or 1 V 

Trig slope allows triggering on either the positive or negative edge of a signal. 

Triggered LED is ON (green) when a trigger point , as defined above, is detected. 

Trig select determines which channel acts as the trigger. 

Timebase varies the amount of real signal time to be captured and displayed. Total time 

displayed is selectable. 

RUN/STOP enables halting of the scope display for close inspection. 

Y autoscale ON: enables toggling of the Y axis autoscale function for stable signal viewing with 

varying amplitude signals.  

 

This built in scope is a convenient, customized signal display for use in specific experiments. 

Spectrum display is also available in certain TABs when required. 

 

Note for ELVIS 2+ users 

 

Due to the independent scope instrumentation available in the ELVIS 2+ it is possible to 

simultaneously use the independent scope from the Instrument Launcher panel as well as viewing 

the signals in the TAB based scope display. 

 

The Dynamic Signal Analyser (DSA), a spectrum analyser, can also be used, but not at the same 

time as the independent scope. 
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Laboratory Experiment ‘X’ TABS 
 

Each experiment in the SIGEX Lab Manual has its own SFP TAB if required. 

Select the TAB as required and the appropriate instrumentation will be displayed. Labs 3 to 18 

have TABs available. 

 

Some graphs also have cursors enabled. These are very useful for taking accurate & quick 

measurements. 

 

HINT: Right-clicking on a graph will display extra available options you can use. Different 

options are available when you right-click while the SFP is not running eg: setting a graph from 

linear to log display is done while SFP is not running. 

 

 

Digital Filter Design TAB 

 

 
 

This TAB makes available several of the digital filter design features from the toolkit in one 

handy display. The user should select a filter type from which the transfer function will be 

calculated. The coefficients from the transfer function are extracted and  setup on the SIGEx 

hardware as the triple ADDER gains when required by the user. This can be seen on the SFP. 

The calculated responses are displayed onscreen. 

To view the actual signals and responses from the hardware, switch to a TAB which contains a 

scope and FFT, for example the ZOOM FFT TAB, whilst inputting an appropriate source signal. 

 

Note that SIGEx is limited to implementing only up to 2nd order filters. A red “error” LED will 

highlight when orders >2 are selected. 
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ZOOM FFT TAB 

 

 
 

This TAB contains a scope display, a spectrum display, and a zoomable view of the FFT display. 

This TAB is a general purpose display TAB and is not associated with any particular experiment. 

The FFT display is a 1000 point display, and the “# samples” control allows the user to select a 

zoom window from 0 to 1000 points to display alongside. The “zoom region” slider enables the 

zoom region to be selected from the overall 1000 point FFT display.  

 

 

PZ PLOT TAB 

 

 
 

This TAB uses components from the Digital Filter Design toolkit to calculate and plot the poles 

and zeros on the unit circle from the coefficients of the transfer function as it is set up on the 

SIGEx board. 

 

The coefficient values from the triple ADDER gain controls are read by this TAB and plotted as 

the equivalent poles and zeros in real time. 

 

This is especially interesting when the coefficients are being varied manually by the onboard 

GAIN ADJUST knob, in that the user can see the poles and zeros moving about the unit circle 

in real time alongside the hardware. 
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Experiment 3 – Special signals – characteristics and applications 

 
Achievements in this experiment 
 

Time domain responses are discovered: step and impulse responses as paradigms for the 

characterization of system inertia; sinewaves were used as probe signals; clipping was applied to 

the recovery of a digital signal. 

 

Preliminary discussion 
 

Bandwidth is a term that has been in the engineering vocabulary for many decades.  Its usage 

has extended over time, especially in the context of digital systems.  It has become 

commonplace now to mean information transfer rate, and all Internet users know that 

broadband stands for fast, and better.  There are highly competitive markets demanding top 

performance – ever higher speed whilst maintaining a low probability of corruption.  However, as 

speed is increased, obstacles emerge in the form of noise, interference and signal distortion. At 

the destination these limitations become digital errors, resulting in pixellated images, and audio 

breaking up. 

 

Engineers involved in the design of these systems must assess the suitability of numerous 

components and sub-units e.g. adequate speed of response ?, too noisy, distorted? They will 

need to benchmark the behaviour of subsystem. The procedures that are used for modelling and 

testing must be universally accepted. 

 

The most important consideration affecting the speed of a digital signal is the switching 

process to produce a change of state. The switching time can never be instantaneous in a 

physical system because of energy storage in electronic circuitry, cabling and connecting 

hardware. This energy lingers in stray capacitance and inductance that cannot be completely 

eliminated in wiring and in electronic components. The effect is just like inertia in a mechanical 

system. 

 

A universal procedure is needed to characterize, measure and specify ‘inertia’. Various 

paradigms have become established over many years of application. One of these is the step 
response.  For this reason, the step function has become one of the special signals in systems 

engineering. 

There are other signal types of importance.  The sinusoid or sinewave heads the list of the 

range of applications.  There are many others, including the impulse function, ramps, 

pseudonoise waveforms and pseudorandom sequences, chirp signals.   

 

This Lab has its focus on signals that are most needed for basic operations.  Other signals will 

be introduced progressively in succeeding labs. 

 

 

 

 

 

 
Figure 1: step, impulse and sinusoid signals 
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The experiment 
 

In Part 1 we investigate how signals are distorted when a system's response is affected by 

inertia, and discover signals that are useful for probing a system's behaviour. 

In Part 2 we introduce the sinewave, and observe how the systems investigated in Part 1 

respond to inputs of this kind. 

Signals that have been subjected to amplitude limiting, also known as clipping, are commonly 

encountered when excessive amplification is used, such as in audio systems, resulting in overload 

distortion.  In Part 3 we generate clipped signals and examine a useful application of clipping. 

 

As this experiment is a process of discovery, we will name the blocks which represent the 

channel “ System Under Investigation” until we have familiarized ourselves with their actual 

characteristics. 

 

It should take you about 45 minutes to complete this experiment. 

 

 

Pre-requisites: 

Familiarization with the SIGEx conventions and general module usage.  A brief review of the 

operation of the SEQUENCE GENERATOR module.  No theory required. 

 

Equipment 

 

�  PC with LabVIEW 2009 (or higher) & “Digital Filter Design” toolkit installed 

�  NI ELVIS 2 or 2+ and USB cable to suit 

�  EMONA SIGEx Signal & Systems add-on board 

�  Assorted patch leads 

�  Two BNC – 2mm leads 

 

 

 
 

Figure: TAB 3 of SIGEx SFP 
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Procedure 
 

Part A – Setting up the NI ELVIS/SIGEx bundle 

 

1. Turn off the NI ELVIS unit and its Prototyping Board switch. 

 

2. Plug the SIGEx  board into the NI ELVIS unit. 

 

Note: This may already have been done for you. 

 

3. Connect the NI ELVIS to the PC using the USB cable. 

 

4. Turn on the PC (if not on already) and wait for it to fully boot up (so that it’s ready to 

connect to external USB devices). 

 

5. Turn on the NI ELVIS unit but not the Prototyping Board switch yet. You should observe 

the USB light turn on (top right corner of ELVIS unit).The PC may make a sound to indicate that 

the ELVIS unit has been detected if the speakers are activated. 

 

6. Turn on the NI ELVIS Prototyping Board switch to power the SIGEx board. Check that 

all three power LEDs are on. If not call the instructor for assistance. 

 

7. Launch the SIGEx Main VI. 

 

8. When you’re asked to select a device number, enter the number that corresponds with 

the NI ELVIS that you’re using. 

 

9. You’re now ready to work with the NI ELVIS/SIGEx bundle. 

 

10. Select the EXPT 3 tab on the SIGEx SFP. 

 

Note: To stop the SIGEx VI when you’ve finished the experiment, it’s preferable to use the 

STOP button on the SIGEx SFP itself rather than the LabVIEW window STOP button at the 

top of the window. This will allow the program to conduct an orderly shutdown and close the 

various DAQmx channels it has opened. 

 

 

 

 

 

 

 

 

 

Ask the instructor to check

your work before continuing.
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Part 1a – Pulse sequence speed throttled by inertia 
 

In this set of exercises we continue the digital theme introduced above and explore the 

behaviour of signals in transit through a channel that has a limited speed of switching. 

 

S.U.I. SEQUENCE 
SOURCE 

 
 

Figure 1a: block diagram of the setup for observing the effect of  

a system (SUI) on  a digital pulse sequence. 

 

 

 
Figure 1b: SIGEx model for Figure 1a. 

 

11. Patch up the model in Figure 1b. The settings required are as follows: 

 

PULSE GENERATOR:  FREQUENCY=1000; DUTY CYCLE=0.50 (50%) 

SEQUENCE GENERATOR: DIP switch to UP:UP for a short sequence. 

SCOPE: Timebase 10ms; Rising edge trigger on CH0; Trigger level=1V 

 

Set up the CH0 scope lead to display the LINE CODE output of the SEQUENCE GENERATOR  

 

12. Measure the smallest interval between consecutive transitions .  Compare this with the 

duration of one period of the clock by moving the scope lead to view the SEQUENCE 

GENERATOR CLK input from the PULSE GENERATOR. 

 

Question 1 

What is the  minimum interval of the SEQUENCE GENERATOR data ? 

 

 

 

 

 

We could think of these sequences as streams of logic levels in a digital machine, possibly 

representing digitized speech or video. The information elements in this stream are the unit 
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pulses. They are sometimes called symbols. Verify that there is one symbol per clock period. 

Since the clock frequency is 1000 Hz, the symbol rate is 1000 per second. The symbols in this 

sequence have only two possible values, so they are called binary symbols, and the transmission 

rate is commonly expressed as bits/sec. 

 

 

Note the presence of oscillations on both signals and the differences between them.  Where 

possible you should venture comments. You are not expected to have any prior knowledge of 

these waveforms.  

 

Question 2 

Describe the signal transitions for both outputs: 

 

 

 

 

 

14. With the clock remaining unchanged on 1000 Hz measure the time for each signal to 

change state. Is it the same for low to high (amplitude) as for high to low ?  Specify the 

reference points you are using on the amplitude range, eg 1% to 99%, 10% to 90%. Note these 

values in the table below. “Freeze” the signals using the “RUN/STOP” SFP switch in order to 

take your measurements, and use the TRIGGER SLOPE control to select between risign and 

falling edge capture. 

 

NOTE: Disconnect the RC NETWORK when measuring the other systems as it loads the output 

LINE CODE signal slightly and affects the measurements. 

 

TIP: Calculate the levels you wish to measure and use the X & Y cursors as guidelines. 

 

13. Connect the CH0 lead to the output of 

the BASEBAND LPF module (BLPF) and  

connect the CH1 lead to the output of the 

TUNEABLE LPF module (TLPF).  

 

Set the TLPF as follows: 

TLPF FREQ: set knob to 12 o’clock 

 TLPF GAIN: set knob to 12 o’clock 

 

 

 

 

 

 

 

 

 

 
Figure 1c: example signals 
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Table 1: transition times for sequence data 

 

 

 

15. Next, increase the clock frequency to around 1.5 kHz. Repeat the measurements in Task 

14 above, and compare the two sets of results. 

 

16. Progressively increase the clock frequency, and carefully observe the effect on the 

output waveform.  Note that something significant occurs above 2 kHz.  Confirm that below 

2 kHz the original transitions can be unambiguously discerned at the channel output, even 

though they are not sharp.  Describe your observations as the clock is taken to 3 kHz and above.  

Are you able to correctly identify the symbols of the original sequence from the distorted 

output waveform?  Estimate the highest clock frequency for which this is possible.  Venture an 

explanation for the disappearance of transitions in this channel.  

 

Question 3 

Describe the signal transitions for both outputs: 

 

 

 

 

 

In the next segment we will closely examine the shape of the transition corresponding to an 
isolated step excitation. 
 

Part 1b – isolated step excitation of a system 

 

 

 

STEP 
SOURCE 

S.U.I. 
 

 
Figure 1c: block diagram of step excitation arrangement 

 

Range  

(%) 

BLPF@1kHz 

(us) 

TLPF@1kHz  

(us) 

BLPF@1.5kHz  

(us) 

TLPF@1.5kHz  

(us) 

10-90 rising     

10-90 falling     

1-99 rising     

1-99 falling     
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Figure 1d: SIGEx model Figure 1c. 

 

 

17. Connect signals as shown in Figure 1d above.  Connect CH0 to the BLPF output and CH1 to 

the TLPF output, and view both signal on the scope. Settings are as follows: 

 

 

 

Observe the channel's response to a single transition (you can use scope trigger and other time 

base controls to display a LO to HI transition or a HI to LO transition).  Confirm that the shape 

of the output transition is similar to the shapes you observed in Task 13 above. 

 

 

When the response to a step excitation is isolated in this way, so that there is no overlap 

with the responses of neighbouring transitions, it is known as the step  response. 

Note the presence of oscillations and the relatively long settling time to the final value 

(sometimes known as ringing -- a term that goes back to the days of manual telegraphy and 

Morse code).  Compare with the waveform in Task 13 . 

 

 

Note that some of the transitions observed in Task 13 occur before the previous 

transition response has completely settled.  

 

18.  PULSE GENERATOR:  FREQUENCY=250; 

DUTY CYCLE=0.50 (50%) 

 

SCOPE: Timebase 2ms; Rising edge trigger on 

CH0; Trigger level=1V 

 

Confirm that the scope time base is set to 

display not more than two transitions. Use 

RUN/STOP to freeze scope display.  
Figure 1c: example signals:50% figure 
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The risetime of the step response is an indicator of the time taken to traverse the transition 

range.  Various definitions can be found according to the application context. The frequently 

used 90% criterion is suggested as a convenient choice for this lab. 

 

19. Measure and compare the risetime of the three step responses.   Use this to estimate 

the maximum number of transitions per second that could be accommodated in each case (ignore 

the effect of the oscillations). Compare this with the results in Task 0.. 

 

 
Table 2: transition times for step input 

 

 

 

          

          

          

          

          

          

          

          

          

          

 

 
Graph 1: step response waveforms 

 

Range  

(%) 

BLPF 

(us) 

TLPF  

(us) 

RCLP  

(us) 

10-90 rising    

10-90 falling    
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Part 1c – isolated pulse response of a system 
 

An isolated pulse can also be used as an alternative to the use of an isolated step as the 

excitation to “probe” the behaviour of the system. The variable duty cycle of the PULSE 

GENERATOR serves as source of this signal.   

 

 

S.U.I. 
 

PULSE 
SOURCE 

 
 

Figure 1e: block diagram of pulse response investigation 

 

 
 

Figure 1f: model for pulse response investigation 

 

20. Leave the patching as per the previous section, with the PULSE GENERATOR output 

connected to both S.U.I.  With the frequency of the PULSE GENERATOR still set to 250 Hz, 

progressively reduce the DUTY CYCLE in steps as follows: 0.4, 0.3, 0.2, 0.1, 0.05 (5%).  

 

When you reach 0.1, move in steps of 0.01 eg. 0.09, 0.08, 0.07,... and observe the effect on the 

pulse width and pulse interval.   Note that the transitions are not affected.  As you continue to 

reduce the duty cycle, and thus reduce the input impulse width,  the flat top between 

transitions gets shorter, and ultimately disappears. Since the rising transition is not able to 

reach its final value, it is not surprising that the amplitude of the pulse gets smaller.   

 

 

Question 4 

Describe what happens when you reach 10% and 5% duty cycle ? 
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21. Are you able to determine the ‘demarcation’ pulse width -- i.e. after which the response 

shape remains unchanging? Record the duty cycle value at which this occurs for all SUI’s in the 

table below. 

 

 

 
Table 3: pulse response readings 

 

 

22. Using the known PULSE GENERATOR frequency and the measured duty cycle, calculate 

and tabulate the input pulse width. 

 

23. Express this as a percentage of the step response risetime, using the values from the 

previous section on step response, and note these values the the table above. 

 

Reflect on this for a moment, i.e. the response shape remaining apparently independent of 

the input pulse width -- this is an interesting discovery.   

 

24. Move the scope leads so as to view the input pulse as CH0 and one of the SUI outputs on 

CH1.Note that for the both there are oscillations. The presence of these oscillations provides 

an opportunity for additional observations of shape changes as the width of the input pulse is 

reduced. There are many ways of testing this, eg. the number of sidelobes, their relative 

amplitudes, the intervals between zero crossings. 

 

25. For each SUI, set the pulse width to the “demarcation” value and measure the period of 

the oscillations following the pulse. Note these in the table above. 

 

You have demonstrated that, provided the time span of the excitation signal is sufficiently 

concentrated, the shape of the response pulse is entirely determined by the characteristics of 

the system.  We could think of this as the striking of a bell, or tuning fork, or of the steel 

wheel of a train to detect a crack.  The system is hit with a short sharp burst of energy.   
 
INSIGHT: The response shape is not affected by the input signal. 
 
The energy burst used as input is called an impulse.  The resulting response is called the impulse 
response.  An impulse function is a mathematical construct derived from a physical pulse.  The 

idea is straightforward. The pulse width is reduced to an infinitesimal value while maintaining 

 BLPF TLPF  RCLPF  

Duty cycle 

 “demarcation” value 

   

Calculated pulse width (us)    

% of step response    

Period of oscillations (us)    
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the energy constant.  Naturally this implies a very large amplitude.  The impulse function plays a 

central role as one of the fundamental signals in systems theory, with numerous ramifications.  

 

In the above exploration we discovered practical conditions that make it possible to generate a 

system's natural response or characteristic, i.e. a response that is not affected by the exact 

shape of the input excitation. Concurrently we have discovered a path to the definition of the 

impulse function and a vital bridge to link this mathematical abstraction to the world of physical 

signals. 

 

 

26. With the setup unchanged, measure the delay at the peak of the output pulse and 

compare this with the delay of the step response measured earlier. 

 

27. Return to your records of the step responses obtained in Steps 17 & 18.  For each case, 

carry out a graphical differentiation with respect to time (approximate sketches are sufficient, 

however take care to achieve a good time alignment to identify key features). Compare these 

results with the records obtained in Task 23.  As a useful adjunct exercise, consider a slightly 

modified step function in which the transition is a ramp with a finite gradient, though still quite 

steep. Carry out the differentiation with respect to time on this function, and compare with the 

above. Record your conclusion. 

 

          

          

          

          

          

          

          

          

          

          

 

 
Graph 2: differentiations of step response waveforms 
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You have demonstrated that, provided the time span of the excitation signal is sufficiently 

concentrated, the shape of the response pulse is entirely determined by the characteristics of 

the system.  We could think of this as the striking of a bell, or tuning fork, or of the steel 

wheel of a train to detect a crack.  The system is hit with a short sharp burst of energy.  The 
response shape is not affected by the input signal. 
 

The energy burst used as input is called an 

impulse.  The resulting response is called the 

impulse response.  An impulse function is a 

mathematical construct derived from a 

physical pulse.  The idea is straightforward. 

The pulse width is reduced to an infinitesimal 

value while maintaining the energy constant.  

Naturally this implies a very large amplitude.  

The impulse function plays a central role as 

one of the fundamental signals in systems 

theory, with numerous ramifications.  

 

 

In the above exploration we discovered practical conditions that make it possible to generate a 

system's natural response or characteristic, i.e. a response that is not affected by the exact 

shape of the input excitation. Concurrently we have discovered a path to the definition of the 

impulse function and a vital bridge to link this mathematical abstraction to the world of physical 

signals. 
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Part 2 – Sinewave input 
 

As mentioned in the introduction, sinewaves are encountered in a large number of applications.  

The special role of the sinusoidal waveshape for system characterization is explored in 

Experiment 2, and further developed in Experiment 4.  In this segment we just get our toes 

wet. We carry out some basic observations and compare the sinewave response of the various 

S.U.I’s with the impulse response obtained above. 

 

S.U.I. 
 

 
 

Figure 2a: block diagram of setup for sinewave investigation 

 

 
 

Figure 2b: patching model for Figure 2a. 

 

28. Connect the FUNC OUT output from the FUNCTION GENERATOR to the inputs of both 

S.U.I. Launch the NI ELVIS Intrument Launcher and select the FUNCTION GENERATOR. Set 

up the FUNCTION GENERATOR  as follows: 

Select: SINE wave 

Voltage range: 4V pp 

Frequency: 100 Hz 

Press RUN when ready. 

Connect CH0 of the scope to the output of the FUNCTION GENERATOR, and CH1 to output of 

S.U.I. 

 

Progressively increase the frequency from 100 Hz to 10 kHz and observe the effect on the 

amplitude of the output signal.  Make a record of your findings in the form of a table of  
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amplitude vs frequency.  Enter your results into the table on the TAB3 SFP, which will plot 

those results. Consider the possible advantage of using log scales. 

To enable a “log” Y axis, stop the SIGEX SFP program, right click the plot graph, select Y scale > 

Mapping > Log. To return to Linear, repeat this process and select “Linear”. 

 

 
Table 4: amplitude vs frequency readings 

 

 

29. Refer to the results you obtained and sketched of the step response in Question 19. 

Notice the similarity of the step response shape to a half cycle of a sinewave.  Estimate the 

frequency of the matching sinewave. Examine the graph obtained in the above task and see 

whether any feature worth noting appears near this frequency. 

 

Question 5 

What frequency would a matching sinewave have ? 

 

 

 

 

 

Question 6 

Describe what happens to the frequency response plotted on the SFP at this frequency ? 

 

 

 

 

Frequency (Hz) BLPF (Vpp) TLPF(Vpp)  RCLPF(vpp)  
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30. Return to the observations you recorded in Task 19. A physical mechanism was proposed 

there to explain the reduction in pulse response amplitude as the width of the input pulse was 

progressively made smaller.  Consider whether the reduction in output amplitude of the sinewave 

with increasing frequency could be explained through a parallel argument. 

 

Question 7 

What was the mechanism described earlier ? 

 

 

 

 

 

Part 3: clipping 

A common example of voltage clipping or limiting occurs in amplifiers when the signal amplitude 

is too high for the available DC supply voltage headroom.  In audio systems clipping is 

undesirable as it causes distortion of the sound.  However, in other applications, a clipped signal 

can be useful.  

 

We examine the operation of the voltage LIMITER and try out an application.  First we find out 

how it can be used to convert a sinewave to a square wave. 

 

 
Figure 3a: block diagram for clipping a sinewave 

 

 
Figure 3b: wiring model for Figure 3a 

 



 
Experiment 3 - Special signals – characteristics and applications  ©  Emona Instruments 3-17 

31. Patch up the system in Figure 3b. As we will be using the MEDIUM mode of the 

LIMITER unit, the on-board switches must be set accordingly (swA= OFF, swB= OFF).  Tune the 

FUNCTION GENERATOR to 1200Hz and select SINUSOIDAL output with 4 V pp.  

Set scope as follows: 

SCOPE: Timebase 2ms; Rising edge trigger on CH0; Trigger level=0V 

 

Display the output and input of the LIMITER, and observe the effect of changing the amplitude 

at the AMPLITUDE control of the FUNCTION GENERATOR. Make it larger and smaller.  

Record your findings in the form of a graph showing p-p output voltage vs p-p input voltage. You 

can plot your readings on the graph below. 

 

          

          

          

          

          

          

          

          

          

          

 

 
Graph 3: CLIPPER input and output readings 

 

Next we use the CLIPPER as a primitive digital detector. 

 

32. Patch up the SIGEx model in Figure 3d (note that it is an extension of the model in 

Figure 1b). The LIMITER should be in the same setting as before (OFF:OFF).  Display the 

outputs of the LIMITER and of the BLPF. Begin with the clock rate near 1.5 kHz.  As before, 

the timebase should be adjusted to provide a useful balance between detail and range of 

observation. Examine the two signals and consider the possible interpretation of the output as a 

restored or regenerated form of the original digital sequence. 
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S.U.I. SEQUENCE 
SOURCE 

 
Figure 3c: block diagram for clipping a digital pulse sequence 

 

 

 

 
Figure 3d: model for block diagram of Figure 3c 

 

33. As you gradually increase the clock frequency (as in Task 16), carefully watch for the 

disappearance of transitions or pulses in the CLIPPER output.  When this happens, wind the 

frequency back slightly and determine the highest frequency that allows detection without 

visible errors.  Compare the result with your previous findings in Task 16, i.e. without using the 

LIMITER.    

 

 
Figure 4: example of signals in & out of LIMITER 

 

 

34. Compare with the results obtained  in Part 1 and record your conclusions, i.e., about the 

practicality and usefulness of the clipper as an "interpreter" to recover the data in the 

distorted signal  . 
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Question 8 

How does this setup compare to the previous findings without a LIMITER ? 

 

 

 

 

In the above we have used only continuous-time waveforms. Discrete-time signals and systems 

are introduced in Lab 4. 
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Tutorial questions 

 

Q1  The impulse function was described in Part 1. Explain why the step function is a 

better alternative in a practical context.  Show how the impulse response can 

be obtained from the step response.  Is this indirect procedure for measuring 

the impulse response theoretically equivalent, or does it involve an 

approximation? 

Q2  Consider a system with step response rise-time of 4 µs. What information does this 

provide about the impulse response? 

Q3  a. Consider the waveform at the yellow X output of the SEQUENCE GENERATOR (as 

in Part 1).  Suppose the p-p voltage is 3.9 Volt and the clock is 2 kHz.  What is 

the average power into a 1 Ohm load?  

b. Suppose the waveform is passed through BASEBAND LOW PASS FILTER  and 

the p-p output amplitude is also 3.9 Volt.  Is the power greater or less than 

at the channel input?  State the reasoning (hint: consider the waveform 

shape required to have the average power exceed that of the waveform at 

the channel input). 

c.  Consider two different sequences as above.  One has N transitions per period, 

the other has N + 4. Explain why the number of transitions does not affect 

the average power for the signal format at the channel input.  Is the 

answer the same at the output?  If no, in which case will the average power 

be greater? Indicate why. Hint: math not required, just consider how the 

average is worked out. 

Q4  A 60 kHz sinewave is applied at one input of a MULTIPLIER, and a 59 kHz sinewave 

at the other input.  The amplitudes are both 2 Volt  p-p.  Use a suitable 

formula to show that the MULTIPLIER output is the sum of two sinewaves.  

Calculate their respective frequencies.  The MULTIPLIER output is fed to a 

system similar to BASEBAND LOWPASS FILTERS, with step response rise-

time 300 µs.  Describe the signal at the output of this system, if any. 
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Experiment 5 – Unraveling Convolution  

 
Achievements in this experiment 
 

Carry out a step-by-step dissection of the convolution process in a discrete-time system.  Use 

this to discover the convolution formula.  Demonstrate that convolution can be visualized as a 

running average of successive values of the input signal. Observe a special property applying to 

sinewaves.  Demonstrate the operation of a filter in the time domain. 

 

Preliminary discussion 
 

For many students, the first encounter with convolution is an abstract mathematical formula in 

a textbook. This lab offers a more evocative experience.  By tracing the passage of some basic 

signals through a simple linear system, you will be able to observe the underlying process in 

action, and, with a little arithmetic, discover a formula as it emerges from the hardware. 

 

Refresh your basic trigonometry: you will need sin(ω.t) + A.cos(ω.t + φ) expressed as a single 
sinusoid. 

 

If any of the modules is unfamiliar, spend a little time with the SIGEx User Manual.  This will 
give you a headstart in setting up the lab. 

 

We patch up a delay line with two unit delays and three taps with independently adjustable gains 

as in Figure 1.  In the first exercise you will set these gains to given values, and observe the 

output when the input is a single pulse (more exactly, a periodic sequence of single pulses).  This 

is an important preliminary as it introduces the unit pulse response. 
 

UNIT 
DELAY 

UNIT 
DELAY 

INPUT 

OUTPUT 
+ 

b 0 b 1 
b 2 

 
Figure 1a: general block diagram of the system 

 

Next, you will observe the output when a pair of adjacent pulses is used as input.  This near 

trivial example provides us with a springboard to the general case. It will demonstrate how 

convolution operates as an overlapping and superposition of unit pulse responses. A second more 

general input sequence is then used to reveal a deeper insight and to provide a vehicle for 

setting up the key formulas. 

 

In the remainder of the lab we use sinewaves as inputs.  This takes us to the rediscovery of the 

special role of sinusoids in linear time-invariant systems. 

 

In the final exercise we carry out and unravel a disappearing act. 

It should take you about 40 minutes to complete this experiment. 
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Pre-requisites: 

Familiarization with the SIGEx conventions and general module usage.  A brief review of the 

operation of the S/H & UNIT DELAY module from SIGEx User Manual.  No theory required. 

 

Equipment 

 

�  PC with LabVIEW 2009 (or higher) & “Digital Filter Design” toolkit installed 

�  NI ELVIS 2 or 2+ and USB cable to suit 

�  EMONA SIGEx Signal & Systems add-on board 

�  Assorted patch leads 

�  Two BNC – 2mm leads 

 

Procedure 

 

Part A – Setting up the NI ELVIS/SIGEx bundle 

 

1. Turn off the NI ELVIS unit and its Prototyping Board switch. 

 

2. Plug the SIGEx  board into the NI ELVIS unit. 

 

Note: This may already have been done for you. 

 

3. Connect the NI ELVIS to the PC using the USB cable. 

 

4. Turn on the PC (if not on already) and wait for it to fully boot up (so that it’s ready to 

connect to external USB devices). 

 

5. Turn on the NI ELVIS unit but not the Prototyping Board switch yet. You should observe 

the USB light turn on (top right corner of ELVIS unit).The PC may make a sound to indicate that 

the ELVIS unit has been detected if the speakers are activated. 

 

6. Turn on the NI ELVIS Prototyping Board switch to power the SIGEx board. Check that 

all three power LEDs are on. If not call the instructor for assistance. 

 

7. Launch the SIGEx Main VI. 

 

8. When you’re asked to select a device number, enter the number that corresponds with 

the NI ELVIS that you’re using. 

 

9. You’re now ready to work with the NI ELVIS/SIGEx bundle. 

 

10. Select the EXPT 5 tab on the SIGEx SFP. 

 

Note: To stop the SIGEx VI when you’ve finished the experiment, it’s preferable to use the 

STOP button on the SIGEx SFP itself rather than the LabVIEW window STOP button at the 

top of the window. This will allow the program to conduct an orderly shutdown and close the 

various DAQmx channels it has opened. 
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Experiment 
 

Part 1 – Setting up 
 

 

11. Patch up the model as shown in Figure 2. 

Settings are as follows: 

PULSE GENERATOR:  FREQUENCY=1000Hz; DUTY CYCLE: 0.5 (50%) 

SEQUENCE GENERATOR: DIPS UP/UP 

SCOPE: Timebase 10ms; Rising edge trigger on CH0; Trigger level=1V 

 

UNIT 
DELAY 

UNIT 
DELAY 

INPUT 

OUTPUT 
+ 

b 0 b 1 
b 2 

 
Figure 1b: general block diagram of the system 

 

 

 
 

Figure 2: patching diagram of the system in Figure 1 

 

 

12. The required signal appears at the SEQUENCE GENERATOR SYNC output as a 5V signal 

and needs to be reduced in amplitude using the available a0 GAIN function . Using the scope, 

check that you have a periodic sequence of a single 1V pulse in a frame of 31 pulse periods.  

Confirm the pulse width is 1ms. Adjust the a0 gain value to have a pulse amplitude of 1V 

precisely. Adjust the SCOPE trig level to suit. 
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Note that as the incoming pulse is being clocked by the same clock as the unit delay blocks, the 

pulse is already aligned with the unit delay clock and is thus already a discrete signal. For this 

reason it can be input directly into the unit delay without use of the S/H block. 

 

Part 2 – unit pulse response 
 

Before proceeding with the examination of the system response, the delay line “tap” gains must 

be set.  For the first case we shall use b0 = 0.3, b1 = 0.5  and b2 = − − − − 0.2 (see Figure 1). These 
settings have been chosen arbitrarily as interesting and varied values for this exercise. Adjust 

each gain in turn on the SFP and use the scope to confirm your settings. 

 

Question 1 

Describe a procedure for confirming the GAIN at each tap ? 

 

 

 

 

Question 2 

Display the delay line input signal (i.e. at the first z-1  block input) and the ADDER output signal. 

Measure and record the amplitude of each pulse in the output sequence. 

 

 

 

Note that the system output is a sequence of three contiguous pulses with amplitudes in the 

same ratio as the adder input gains.  Could this have been predicted from Figure 1?   

 

 Indeed, since the single pulse at the input is generating delayed and scaled replicas as it travels 

down the delay line. These are then summed in the adder.   

 

Thus we have the system’s response to an isolated pulse.  From this we can define the unit pulse 
response h(n) as the response when the amplitude of the input pulse is unity.  

 

From your measurements, show that the unit pulse  h(0) = b0 , h(1) = b1  , h(2) = b2 in this 

example.  

 

The presence of delayed energy is normally expected in real-life systems, whether electrical or 

mechanical.  For example, due to inertia in mechanical systems. Similarly in electric circuits, we 

have energy storage effects in reactive components such as capacitors and inductors. 
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Part 3 – The superposition sum 
 

 

13. Adjust the SEQUENCE GENERATOR DIP switches to position  UP:DOWN to select the 

sequence of two contiguous pulses. Using the same gain settings as in Part 2, observe the output 

signal.  Note that it consists of four nonzero pulses per frame. Measure and record the 

amplitude of each pulse.   

 

14. Verify that the output sequence is simply the sum of two offset unit pulse responses. 

Use the graph below to show your computation. 

 

  

          

          

          

          

          

          

          

          

          

          

 
Graph 1: unit pulse pair summation 

 

Question 3 

What is meant by “superposition”. Discuss how this exercise above relates to superposition and 

the “additivity” principle. 
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Question 4 

What do you expect to see if this exercise were expanded to two or more contiguous pulses ? 

Explain. 

 

 

 

 

Part 4:  rectified sinewave at input 

 

In this exercise the input is a little more interesting than in Part 3:   a sequence of three or 

four pulses of different amplitude. We obtain the source of this signal from the ANALOG OUT 

DAC-0. We then pass this analog signal to the SAMPLE/HOLD block to be sampled and this 

becomes our discrete sequence of pulses. Note that the PULSE GENERATOR and DAC signal 

generator share the same internal clock and hence no slippage occurs in the scope displays. 

 

Note that although the signal is sampled and becomes “discrete” it has not become a “digital” 

signal. This is an important distinction. Rather it now exists as sequential discrete samples of 

the original signal. More about sampling and its implications in several later experiments.  

 

Settings are as follows: 

PULSE GENERATOR:  FREQUENCY=800Hz; DUTY CYCLE: 0.5 (50%) 

SCOPE: Timebase 10ms; Rising edge trigger on CH0; Trigger level=1V 

 

Confirm that the sinewave from the DAC-0 is 100Hz, 2V peak, before entering the RECTIFIER. 

We will treat the sinewave as a continuous signal and ignore the very small steps present as 

these have no consequence to our procedure. 

 

Question 5 

Note the amplitude of the half wave rectified sine and explain why its amplitude is reduced 

relative to the input ? 
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Figure 3: Block diagram of system with series of pulses as input. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: SIGEx patching model for rectified sinewave input 
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15. Maintaining the same values for the b gains as in Part 1 (i.e. b0 = 0.3, b1 = 0.5  and b2 = -

0.2), display the input (i.e., SAMPLE-HOLD output as shown in Figure 5a) and output signals. 

Sketch the original half-rectified sinusoid and discrete output from the SAMPLE/HOLD in the  

graph below. 

 

 

          

          

          

          

          

          

          

          

          

          

 
Graph 2: inputs and sampled outputs 

 

Confirm that there are 8 samples of each half wave sine input. This is expected as the sampling 

clock is 800Hz and the input sinewave is 100 Hz. 

Note there are four nonzero pulses in the delay line input sequence and six in the summer 

output. The reason for this will emerge as we proceed. 

Again, we will carry out a deconstruction of the output signal in terms of the time offset 

contributions, i.e. we will trace the output pulse amplitudes in terms of the 

input values. We could use the same method as in Part 3, however, there is an 

interesting alternative. We will separately observe and compare the three individual 

contributions into the output ADDER, i.e. the signals added through gains b0, b1 and 

b2 in turn. Examples of these signals are shown in Figure 5b below. 
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Figure 5a: example input signal and 4-level sampled signal 

Figure 5b: example individual bo, b1 & b2 inputs to adding junction 

 

16. We begin with the contribution through b2. Temporarily disconnect the leads 

corresponding to inputs b0 and b1. Observe and record the input and output signals in the graph 

above. Confirm for yourself that this result is as expected. View the sampled input on one scope 

channel and the individual output on the other scope channel. 

 

 

17. Now repeat for the b1 and b0 contributions.  Only the outputs need be recorded since 

the same input is used.  Again, verify that the results are as expected. 

When completed, you will have three scaled replicas of the input with time offsets.  

 

 

18. For each time slot, sum the contributions of the three output records and plot the 

result. Verify that this agrees with the output signal produced when the three leads are 

reconnected to the adder inputs. 

 

Question 6 

How does this process relate to the principle of “superposition” ? 

 

  

 

In summary, we have just passed a sequence of discrete values (our sampled input) through a 

system with a particular response (a series of unit delays with multiplying taps) to produce an 

accumulation ( the adder) of discrete product terms which are then output. 

 

Each one of these individual contributions is the scaled and shifted version of the unit pulse 

response of this system. Another way of thinking about this system as as it being a series of 

weighting coefficients. 

 

Now we need to think about representing this process mathematically. 

 

An obvious way to start is to write a separate formula for the six nonzero output pulse 

amplitudes . Let us name them y(1), y(2), …, y(6).   
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19. Label them on your sketch above. Pay attention to the orientation you use. 

 

Each consists of a sum of three products,  i.e., of a tap gain b0, b1, or b2 and an input pulse 

amplitude. 

 

The input sequence has eight elements (as previously observed, four of these are zero). Label 

these x(1), x(2),  …, x(8)  (you should find it convenient to choose  x(1) = x(2) = x(7) = x(8) = 0). 

 

20. Label these on your sketch above. 

 

Numeric indexing is useful as an aid in looking for the general pattern.  

 

The next step is to use symbolic indexing so that the set of formulas can be condensed into one.  

Here are some of the formulas as they appear with numeric indexing: 

 

y(3) = b0 .x(3) + b1 .x(2) + b2 .x(1) 

 

y(4) = b0 .x(4) + b1 .x(3) + b2 .x(2) 

 

y(5) = b0 .x(5) + b1 .x(4) + b2  .x(3) 

 

y(6) = b0 .x(6) + b1  .x(5) + b2  .x(4) 

 

Question 7 

Write down the formula for y(2) and y(1) ? Discuss any unexpected differences . 

 

 

 

 

The general pattern is readily apparent. With symbolic indexing, we can replace these with the 

single formula 

 

y(n) = b0 .x(n) + b1  .x(n -1) + b2  .x(n - 2) 

 

 where n represents the position in the sequence as a discrete time index.  

 

In Part 2, we found that the unit pulse response h(k) for this system is 

   h(0) = b0 , h(1) = b1  , h(2) = b2 .  

 

Hence we can express the formula for y(n) as   

 

  y(n) = h(0) .x(n) + h(1).x(n - 1) + h(2).x(n - 2) 

 

i.e.,  y(n) = sum over range of k {h(k).x(n - k)} 

 

This simple formula is known as convolution. 
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For the discrete signal case we have implemented it is also known as the convolution sum or the 

superposition sum. It can also be expressed in this more compact form: 

 

  y(n) =  

 

  y(n) = x(n) * h(n)   where * represents the “convolution” operator. 

 

It provides a neat way of packaging the procedures you carried out in your investigation, and it 

allows the range of k to be extended to any desired value. It is the mathematical representation 

of the interaction between the input sequence and the unit pulse response of the system. 

 

Note in particular the term x(n-k). Since we are computing in terms of k, this is a time reversed 

version of x(k). This issue is put into context further in a later experiment introducing 

correlation, an operation which has a similar looking equation. This subject is covered in detail in 

the text by Oppenheimer p90 (see Reference section for details) 

 

Question 8 

Explain why this term is reversed and what does this mean ? 

 

 

 

For the continuous signal case, the summation is achieved using integration and is known as the 

convolution integral or the superposition integral. This topic is covered in detail in many texts 

including Lathi and Oppenheimer. (see Reference section for details) 

 

In brief, the convolution integral for continuous signals comes about by increasing the number 

of discrete samples whilst reducing their width to a limit of 0, such that the sum of many 

products can be represented by the integration of the product. 

 

Its equation is  

  y(t) =  

 
 

In the above exercise, we obtained the result by means of a superposition of dissected parts of 

the unit pulse response.  In Part 3 we also used superposition; however, it did not involve 

breaking up the unit pulse response.  This method was easier to apply for that case because the 

input sequence had only two pulses.  

 

Compare the two methods when used with the input in Part 4 (do this with the help of sketch 

graphs as before).  Consider possible advantages of one over the other as a vehicle for deriving 

the convolution formula. 

 

21. Repeat this process with a new system response. Let each tap be equal to 0.333 ie: 

b0=b1=b2=0.333.  
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Question 9 

What is a common label for this response ? 

 

 

 

 

Part 5:  sinewave input 

 

Up to this point we have used relatively short input sequences. This made it easy to trace the 

passage of the pulses through the system since output segments remained distinct and could be 

readily referenced to the corresponding input segment.  However, we need to consider whether 

the formula that we obtained on this basis is also valid in the more general and usual situation 

when the input signal is an ongoing stream without breaks. 

 

For this purpose we will go over the steps in Part 4 using a sinewave as input. This means there 

is no "natural" reference marker, hence you will need to designate one.   

 

Nevertheless, keeping track of time points will be straightforward since the signal is periodic 

and the number of samples per period is relatively small. 

 

22. We use the setup in Part 4, and re-use  “full sinewave” output at DAC-0 by bypassing the 

RECTIFIER. 

 

As before, since the sinewave frequency is a submultiple of the PULSE GENERATOR clock, no 

slippage occurs in the scope displays. 

 

23. Proceed as in Part 4, connecting only one of the three adder inputs. As in Part 4, observe 

and record each of the separate output sequences for each input in turn. 

 

As you would expect, these are scaled and delayed replicas of the input, i.e. they are sampled 

sinewaves.  Carry out spot checks to verify that amplitude and phase relative to the input are 

correct. (Reminder, since there are eight samples per period, the phase shift corresponding to 

a unit delay is 45 degrees.) 
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24.  For each time slot, add up the contributions of the three output records obtained above 

and plot the result. Verify that this agrees with the output signal produced when all the input 

leads are reconnected to the adder. 

 

 

          

          

          

          

          

          

          

          

          

          

 
Graph 3: sinewave input signals 

 

Now we are ready to revisit the formula obtained in Part 4.  Proceed as before and show that 

the formula remains valid for this case. 

Question 10 

Show that the formula remains valid. 

 

 

  

 

This completes the basics of the convolution formula.   
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In the next task we take a closer look at the output signal obtained in Part 5, and show that it is 

a sampled sinewave.  This is a discrete-time example of the investigation in Lab 4, where we 

discovered that when the input of a linear system is sinusoidal, the output will also be sinusoidal. 

25. Confirm that the eight pulses making up one period of the output sequence represent 

samples of a sinewave. A straightforward method is to exploit the sum of squares identity. 

Since there are eight samples per period, you can match pairs of samples that are 90 degrees 

apart (how many pairs can you find?). Note that knowledge of the peak amplitude is not essential 

for this (all that is needed is to show that the sum of the squares is the same for each pair). 

 

Question 11 

Show your working for the sum of squares analysis ? 

 

 

 

 

 

26. Use the FUNCTION GENERATOR tuned to 100 Hz to provide the alternative 

unsynchronized sinewave input. Set it to an amplitude of 2Vpeak (4V pp).  The resulting slippage 

effectively produces an interpolation of the samples --  a useful exploitation of something that 

is usually unwanted! 

 

Now that we have a simple way of displaying the input and output sinewaves, an interesting 

additional item to examine is the theoretical verification of the measured output/input 

amplitude ratio and phase shift. The peak values are clearly apparent, so the amplitude ratio 

measurement is straightforward. Similarly, the now discernible zero crossings can be used for 

the phase shift measurement.  

The math for the theoretical verification is done by means of the application of the formula for 

reducing the sum of sinusoids .  

In the next Part we investigate an example of effects that can be obtained by means of suitably 

chosen values for the tap gains.  
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Part 6:  mystery application 

Here we explore a special application of convolution.  The setup is the same as for Part 5, 

except for new tap gains in the delay line. Two sets will be tested.  

The first is b0 = 0.3 , b1 = 0.424 , b2 = 0.3 

The second set is  b0 = -0.3 , b1 = 0.424 , b2 = -0.3 

 

27. When the tap gains have been adjusted to the first set of values,( b0 = 0.3 , b1 = 0.424 , 

b2 = 0.3), display the output, and measure the amplitude and phase relative to the input as in 

Part 5. Confirm that this is in agreement with theory. 

 

28. Alter the tap values to the second set of values (b0 = -0.3 , b1 = 0.424 , b2 = -0.3) and 

repeat the measurements. Is the outcome predicted by theory ? 

 

29. Vary the frequency of the sinewave over a suitable range to demonstrate that sinewave 

inputs with frequencies near 100 Hz are heavily attenuated. 

 

Question 12 

Why is the outcome obtained above described as filtering? 

 

  

 

In other labs you will discover how to choose the tap gains to design different kinds of 

responses versus frequency. 
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Tutorial questions 

 

Q1   Look up your textbook to find out the name given to systems that have the structure 
in Figure 1, i.e. without feedback.  Consider an alternative discrete-time 
system that has a single delay element with feedback (refer to your textbook 
if needed). Show how to apply the convolution formula in this case. 

Q2   Consider the condition(s) required to avoid infinite output values in applications 
where the unit pulse response is not time limited.  Show to avoid an unstable 
output in the feedback system in Q1. 

Q3   Consider a process that consists of taking a running average of a data sequence, such 
as atmospheric pressure.  Suppose we do this by taking the sum of 50% of the 
middle value, and 25% of the preceding and following values.  Can this process 
be described as convolution?  If so, write down the unit pulse response. 

Q4   Using integration instead of discrete summation, write down a continuous-time 
version of the convolution formula in terms of the system impulse response. 
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Experiment 8 – A Fourier Series analyser  

 
Achievements in this experiment 
 
Compose arbitrary periodic signals from a series of sine and cosine waves. Confirm the Fourier 
Series equation. Compute fourier coefficients of a waveform. Build and use a Fourier Series 
analyser.  Demonstrate that periodic waveforms can be decomposed as sums of sinusoids. 
Introduce complex notation. 
 

Preliminary discussion 
 
In Lab 3 we discovered that sinewaves are special in the context of linear systems (time 
invariance assumed).  Unlike other waveforms, a sinewave input emerges at the output as a 
sinewave.  We saw in Lab 4 that this makes it possible to completely characterize the behaviour 
of a system in this class by simply measuring the output/input amplitude ratio and the phase 
shift of the sinewave as a function of frequency.   
 
Now, this is fine if we only need to process sinewaves -- is it feasible to make use of this when 
dealing with other kinds of inputs ?  For example, when the input is a waveform like the 
sequence of digital symbols we investigated in Lab 4. 
 
One possibility is to see whether a nonsinusoidal waveform could be expressed as a sum of 
sinewaves, over a suitable frequency range, either exactly, or even approximately.  If this could 
be done, the system output can then be obtained by exploiting the additivity property of linear 

systems, i.e., first obtain the output corresponding to each sinusoidal component of the input 
signal, then take the sum of the outputs. This was covered in Lab 4. 
 
In this Lab we explore this idea by means of an ancient technique based on the generation of 
beat frequencies -- somewhat like when a musician uses a tuning fork. We will begin by adding 
together many beat frequencies and view the resulting waveform. From there we will look at the 
equations and use what we know from trigonometry to decompose waveforms into their 
constituent components. 
 
Pre-requisites: 

Familiarization with the SIGEx conventions and general module usage.  A brief review of the 
trigonometry required will be covered as needed. 
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Equipment 

 
�  PC with LabVIEW 2009 (or higher) & “Digital Filter Design” toolkit installed 

�  NI ELVIS 1, 2 or 2+ and USB cable to suit 

�  EMONA SIGEx Signal & Systems add-on board 

�  Assorted patch leads 

�  Two BNC – 2mm leads 

 

Procedure 

 
Part A – Setting up the NI ELVIS/SIGEx bundle 

 
1. Turn off the NI ELVIS unit and its Prototyping Board switch. 
 
2. Plug the SIGEx  board into the NI ELVIS unit. 
 
Note: This may already have been done for you. 
 
3. Connect the NI ELVIS to the PC using the USB cable. 
 
4. Turn on the PC (if not on already) and wait for it to fully boot up (so that it’s ready to 
connect to external USB devices). 
 

5. Turn on the NI ELVIS unit but not the Prototyping Board switch yet. You should observe 
the USB light turn on (top right corner of ELVIS unit).The PC may make a sound to indicate that 
the ELVIS unit has been detected if the speakers are activated. 
 
6. Turn on the NI ELVIS Prototyping Board switch to power the SIGEx board. Check that 
all three power LEDs are on. If not call the instructor for assistance. 
 
7. Launch the SIGEx Main VI. 
 
8. When you’re asked to select a device number, enter the number that corresponds with 
the NI ELVIS that you’re using. 
 
9. You’re now ready to work with the NI ELVIS/SIGEx bundle. 
 
10. Select the Lab 8 tab on the SIGEx SFP. 

 
Note: To stop the SIGEx VI when you’ve finished the experiment, it’s preferable to use the 
STOP button on the SIGEx SFP itself rather than the LabVIEW window STOP button at the 
top of the window. This will allow the program to conduct an orderly shutdown and close the 
various DAQmx channels it has opened. 
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The experiment 
 

Part 1 – Constructing waveforms from sine & cosines 
 

A simple sinusoid with zero phase can be represented by the equation  
 
     (Eqn 1) 
 
And a cosinewave with a frequency of n times can be simply represented by the equation 
 
     (Eqn 2) 
 
Any wave which is an integer multiple of another frequency is known as a harmonic of the 
frequency. So equation 2 represents the harmonics of the signal in equation  for n >1. 
We can use the “harmonic summer” simulation in Experiment TAB 8 to view and sum multiple 
signals which are harmonics of the fundamental signal ie: the signal for n=1. Harmonics for which 
n is even are known as even harmonics, and when N is odd are called odd harmonics. This 
simulation allows us to view and sum any sinusoid for which 1 <= n <= 10, that is, the fundamental 
and nine harmonics. The numeric entry boxes allow you to enter the amplitude of each sinusoid. 

 
11. Experiment a little by entering various amplitudes into the numeric entry boxes for the 
cosine row. Confirm for yourself visually that what is displayed is as you would expect. 
 
12. Set all amplitudes to zero, except for the “1st” component, the fundamental, which you 
can set to 1. Moving from the second to the ninth sequentially, set each amplitude to the equal 
to 1. As you do this notice how the combined signal is changing. Do this for the cosine row ONLY 
at this point. 
 
Question 1 

How would you expect the summation of to look if you could add up many more harmonics ? 

 

 

 
Question 2 

What is its peak amplitude and is this as expected ? 
 

 

 

Question 3 

Is the fundamental an odd or even function ? Is the summation odd or even ? 
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Question 4 

Write the equation for the summation of the 10 signals ? Is it symmetrical about the X axis? 
 

 

 

 
Question 5 

Vary the amplitudes and notice how the signal changes . You may  set the amplitude of certain 
components to 0 as you see fit. Can you create a wave form which starts at a zero value ? 
Write the equation for your new varied amplitude signal ? Does it start at a zero value ?  

 

 

 
13. Sketch your arbitrary wave form, for which you have just written the equation, below. 
 
 

          

          

          

          

          

          

          

          

          

          

 
Graph 1: sine wave summation 
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The general form of the equation for the summation of cosine harmonics is as follows: 
 

 
 
where  are the amplitude values of each cosine wave. 
 
14. Set all cosinewave amplitudes equal to 0 and now set the sine waveform amplitudes equal 
to 1, starting from the first harmonic and moving sequentially until the 10th harmonic. Notice 
how the summation changes as you add harmonics. 
 
Question 6 

How would you expect the sine  summation of to look if you could add up many more harmonics ? 

 

 

 
Question 7 

What is its peak amplitude and is this as expected ? Is this an odd or even function ? 
 

 

 

 

Question 8 

Vary the amplitudes and notice how the signal changes . You may  set the amplitude of certain 
components to 0 as you see fit. Can you create a wave form which starts at a non-zero value ? 
Write the equation for your new varied-amplitude signal ? Does it start at a non-zero value ? Is 
it symmetrical about X axis.? 
 

 

 

 
The general form of the equation for the summation of sine wave harmonics is as follows: 
 

 
 

where  are the amplitude values of each sine wave. 
 

The general form for the summation of both sine and cosine harmonics is: 
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Even functions are symmetrical about the Y axis. 
Odd functions are not symmetrical about the Y axis, but appear to be inverted about the X axis 
on the negative side of the Y axis. 
 
Sine and cosine waves, as well as their sums of sine and cosines, are always symmetrical about 
the X axis. Being symmetrical means that they cannot represent a DC offset. In order to have a 

DC offset we must add a constant to the equation. 
 
15. Add a DC component to the signal by inputting the value into the DC numeric entry box ? 
 
 Let us add a value a0 to represent that constant and the general equation for our arbitrary 
wave form becomes 
 

 
 

where N is max number of harmonics present. In our experiment above, N=10. 
 
This equation describes any arbitrary wave form with the proviso that it is periodic. Any 
periodic waveform, no matter how complicated, can be represented by the summation of many 
simple sine and cosine waveforms. This equation is known as the Fourier series equation, 
naturally enough named after Jean Baptiste Joseph, Baron de Fourier, 1768 – 1830. 
 

 
Figure 1: Portrait of Joseph Fourier 

 
Let us have a further look at this important equation.  
 
When N equals one, this frequency known as the fundamental frequency, is also called the 
resolution frequency. Being the smallest frequency in this series it defines the minimum 

separation between components in a particular waveform. 
 
In the Fourier series equation above we have grouped waves in terms of whether they are sine 
or cosine waveforms. Let us now modify this equation and group individual components by their 
harmonic number. This is easy enough and is as follows 
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Grouping in this way allows us to think of each frequency as having both a sine and cosine 
component. 
Let us have a quick revision of what adding a sine and a cosine of the same frequency together 
may result in. 
 
16. Using the “harmonics summer” simulation in the Experiment 8  TAB of the SIGEx SFP, 
set all amplitudes including that of the DC equal to 0. Set the amplitude of the sine and cosine 
first harmonic equal to 1. View the resulting summation. 
 
Question 9 

Write the equation for the summation of these 2 waves ? Write the equation for the summation 
in terms of the sine wave with a non zero phase shift. 

 

 

 

 
17. Vary the amplitudes from 0 to 1 and notice how the signal changes .  
 
Question 10 

Describe how the summation changes as you vary the respective amplitudes? 
 

 

  

 
Question 11 

For a particular pair of amplitudes you have set, write the equation for the summation in terms 
of sine and cosine as well as its equivalent polar representation ? 
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18. Sketch a vector or for phasor representation of these two signals and their resulting 
summation, known as the resultant.  
 
 

          

          

          

          

          

          

          

          

          

          

 
 

Graph 2: components & resultant 

 
 
For each harmonic, nwt, a signal may have a sine and cosine component, implemented by their 
own respective amplitude, an and bn. It is helpful to think about these component pairs as a 
single entity at a particular frequency. The only difference between them being their respective 
amplitude and the respective orientation or phasing. We know that a sine wave is 90° out of 
phase with a cosine wave, a quality which makes those two components orthogonal to each other.  
 
By orthogonal we mean that they operate independently of each other. And so we need a 
notation and document these two-dimensional pair of components and this notation is provided 
to us by Euler  with his famous equation: 

 

 
 
Where j the notes the component at 90° out of phase with the other component, hence the sine 
and cosine pair. 
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Hence we can replace all sine/cosine pairs at a particular harmonic n with the complex 
exponential function ejnwt,  and in this way the Fourier series can be rewritten as 

 
 
where Cn represents the resultant from the pair of respective amplitudes for the sine and 
cosine components. ie: Cn

2 = bn
2 + an

2, and is known as the “complex fourier series”. 
 
Euler's formula allows us to process the sine/cosine component pair , simultaneously, rather 
than individually. It is a form of two-dimensional notation where the sine and cosine components 
for a frequency are instead treated together as a resultant with particular phase ie polar 
notation. This notation is known as “complex” notation and was introduced in the previous 
experiment, Experiment 7. 

 
Remember that the practical part of this experiment just completed above shows us how a 
resultant waveform is represented by two orthogonal components. 
 
 
Part 2 – Computing Fourier coefficients 

 

In the previous part of this experiment we discovered that we can construct any arbitrary 
periodic waveform by the summation of a number of sine and cosine harmonics. This knowledge 
is the basis of signal synthesis and in this part of the experiment we will do the reverse 
process, that is, the analysis of an arbitrary wave form to discover the presence and amplitude 
of its constituent harmonics. We call these amplitudes the Fourier coefficients of the waveform 
as they are the coefficients within the Fourier series equation we have just derived. 
 
Armed with only some basic trigonometry we will now explore some more qualities of sinusoids. 
Before we create our arbitrary wave form to be analysed let us determine some rules with 

which we can build our analyser. 
 
We know that the area under a sine wave or a cosine wave over a timeframe of one period will 
always be equal to 0. Consequently we know that the area under a sine wave or cosine wave for a 
timeframe of any number of periods will also be equal to 0. To determine the area 
mathematically we would integrate over the timeframe of interest. This process would give us 
the average value of the signal during that time. This average value is the DC component of the 
signal. 
 

 
 
   Figure 2: model for integrating one period of a sinusoid 
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The INTEGRATE & DUMP module can be used to integrate over a single period as denoted by 
the input clock. This is well suited to integrating periodic waveforms such as sinusoids and 
products thereof. 
 
In this next exercise we will integrate a sinusoid over a single period to prove the assertion that 
the area under a sine wave or a cosine wave over a timeframe of one period will always be equal 
to 0. 
 

19. Connect the model as per Figure  above. The clock connection is necessary for this 
module, unlike for the continuous time INTEGRATORS on the SIGEx board. 
 
 Settings are as follow: 
SCOPE: Timebase: 4ms; Trigger on Ch0; Connect Ch0 to CLK input; Level=1V 
FUNCTION GENERATOR: Select SINE output, AMPLITUDE = 4vpp, FREQUENCY=1kHz 
Refer to the SIGEx User Manual for instructions on how the I&D and I&H functions work if 
this is not obvious. NOTE: The I & D period is from positive clock edge to positive clock edge. 
 
Question 12 

What is the output value at the end of the integration period ? HINT: the I&H function will 
hold the final value. 
 

 

  

 
20. While viewing the I&D output, to broaden your understanding of the integration process, 
change the incoming signal from sine to triangle to bipolar squarewave at the FUNCTION 
GENERATOR VI and confirm that the integrated output is as you would expect over one period. 
You should be able to confirm that integration is the accumulation of the total signal charge, 
with positive signals adding to the total, and negative signals subtracting from the total. 
 
Another way of extracting the DC component of a signal is by using a filter which is tuned to a 
sufficiently low-frequency to exclude all harmonics except for the DC component. The 
integration process you have just explored is also a form of filtering, (as discussed in 
Experiment 6 on matched filtering.) We will use the filtering method next. 
 
Note that in this next part of the experiment the signals we are using are generated from data 
arrays in LabVIEW and output in a synchronized manner from the ANALOG OUT terminals 

DAC-0 and DAC-1.These signals are thus synchronized to each other, just as they appear on 
screen and in the textbook. 
 
21. Using the left hand side of Experiment 8 TAB of the SIGEx SFP, select a sine wave , 1st 
harmonic. Connect DAC-1 to the input of the TUNEABLE LPF and view both input and output 
with the scope. 
Settings are as follow: 
SCOPE: Timebase 20ms; Rising edge trigger on CH0; Trigger level=0V 
TUNEABLE LPF: GAIN=mid position 
Adjust the frequency control, fc, of the TLPF from fully clockwise counterclockwise until the 
output signal is a DC value. 
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Confirm that this DC value is approximately 0 V. 
Try this test for several harmonics. Change the “sine harmonic” value to 2,3 or 5 etc to try this. 
 
INSIGHT 1: average value of an integral number of periods of sine or cosine waves equals zero. 
 
Note that as far as the filter is concerned a single cosine wave is the same as a sine wave, so 
Insight 1 holds true for both. You can vary the phase of the sinewave out of DAC-1 using the 
“sine phase” control. The signal out of DAC-0 remains constant as a cosine wave. 

 
22. Set the “sine harmonic “ value  back to 1. Set “sine phase” to 0.  View DAC-1 with CH1 
and DAC-0 with CH0.  
Settings as follows: 
SCOPE: Timebase 20ms; Rising edge trigger on CH0; Trigger level=0V 
DAC-1 will be a sine wave and DAC-0 a cosine wave, relative to each other.  
Connect as shown in the figure below. View the output of the MULTIPLIER as well as the output 
of the TUNEABLE LOW PASS FILTER. 
 

 
 

Figure 3: comparing sinusoids 
 
You will now multiply a sine wave by a cosine wave and determine its average value. 
Repeat this with the second and third harmonic of the sinusoid. 
 
Question 13 

What is the average value of these three products ?  
 

 

  

 
INSIGHT 2: average value of an integral number of products of any sine or cosine harmonics 
equals zero. 
 
23. Set the “sine harmonic “ value  back to 1. Set “sine phase” to 90.  View DAC-1 with CH1 
and DAC-0 with CH0.  
Settings as follows: 
SCOPE: Timebase 20ms; Rising edge trigger on CH0; Trigger level=1V 
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DAC-1 will now be a cosine wave and so will be DAC-0. NB: This is relative to the start of the 
signal data array. See the ANALOG OUT VIEWER window for confirmation. 
Connect as shown in the figure above. 
View the output of the MULTIPLIER as well as the output of the TUNEABLE LOW PASS 
FILTER with the scope. 
 
You will now multiply a cosine wave by itself and determine its average value. 
Repeat this with the second and third harmonic of the cosine wave. 

 
Question 14 

What is the average value of these products ?  
 

 

 

 
INSIGHT 3: average value of an integral number of products of any sine by its harmonic equals 
zero. 
 
INSIGHT 4: average value of an integral number of products of any sine by itself equals a non 
zero value.The same holds for cosine. 
 

Question 15 

Write the complete formula for the product of a cosine, Acoswt, by itself? What do the terms 
represent? 

 

 

 
At this point we can see that the only product to yield a non-zero average value is that of a sine 
wave by the same sine wave. The same is true for cosine. So if we multiply an arbitrary 
waveform by a particular “probing” sine or cosine harmonic and extract the average value of this 
product there will only be non-zero when that arbitrary wave form contains that particular 
“probing” harmonic as one of its constituent components. This is a very powerful insight and 
allows us to have a simple tool with which to analyse arbitrary wave forms.  
Let us now give this a try. 

 
24. Construct the following arbitrary wave form using the HARMONIC SUMMER on the 
right hand side of the SIGEx SFP, Experiment 8 TAB. 
Settings are as follows : 
Cosine amplitudes: 1, 0, 0.5,0,0,1,0,0,0,0 
Sine amplitudes: 0,0.3,1,0,0,0,2,0,0,0 
DC level: 0.5 
Switch “to DAC-0” ON: This will output the summation to DAC-0. See the ANALOG VIEWER 
window. 
Set “sine harmonic” =1; Set “sine phase = 0. This signal is output to DAC-1. 
SCOPE: Timebase 20ms; Rising edge trigger on CH0; Trigger level=0V 
 



 

©  Emona Instruments                            Experiment 8 – A Fourier Series analyser V1.1 8-14 

 
 
 

 
 

Figure 4: comparing sinusoids 
 
25. You will need to now ensure that the overall gain of the MULTIPLIER and TLPF is unity. 
We know from the User Manual specifications that the MULTIPLIER gain is approximately 
unity, whereas the TLPF GAIN is variable. Connect both MULTIPLIER inputs to the same 1st 

harmonic sinewave and view the output. The input from the DAC is 4Vpp whereas the output is 
approx. 4.4Vpp…slightly greater than unity gain. While viewing the TLPF output, turn the fc 
control clockwise to pass the entire signal. Adjust the TLPF gain precisely for a 4Vpp output.  
 
26. Return to your previous setup but do not touch the TLPF GAIN setting for the rest of 
the experiment. At this point we are multiplying the arbitrary wave form which investigated by 
a first harmonic sine wave.  
 

 
 

Figure 5: screenshot of SIGEx SFP Tab “Lab 8” including  

harmonic generator bottom left, and summer on the right 

 

27. View the product at the output of the multiplier on CH0 and the TLPF output. Adjust 
the TLPF frequency control to isolate the DC component. Note the value of the DC level as the 
amplitude of the first harmonic sinusoid in the table below. Increase harmonics one by one, 
adjust theTLPF frequency setting if necessary and note the amplitude for the remaining 10 
harmonics in table. 
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Now to analyze for the cosine components. 
 
28. Set “sine harmonic” back to 1. Change “sine phase” to 90. This will convert the sine wave 
into a cosine wave , as sin(wt + 90) = cos(wt). Repeat the above steps to all 10 cosines and enter 
your measurements of the TLPF DC output level into the table . Once complete, set the phase 
back to 0 degrees and complete the measurements for all sine harmonics into the table. 
 

 

 
Table of measured coefficients 

 
29. Connect the input of the  TLPF directly to the arbitrary wave form at DAC-0 to measure 
the DC value of that waveform alone, and enter into the table at “DC (V) = “. 
 
Question 16 

How do your readings compare with expectations ? . Explain any discrepancies .  
 

 

 

 

 
30. While you have the experiment setup, vary the harmonic summer settings and see the 
resulting output from the TLPF. Experiment a little with values while you get the chance. 

Harmonic  

number 

sine 

(V) 

cosine 

(V) 

1st   

2nd   

3rd   

4th   

5th   

6th   

7th   

8th   

9th   

10th   

DC (V) =   
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Part 3 – Build a manually swept spectrum analyzer 
 
In the previous part of this experiment we use synchronised signals which were generated in 
LabVIEW and output via the DACs of the ANALOG OUT module. In this part of the experiment 
we will analyse the constructed arbitrary signal using an independent sinusoid generator, that is, 
the FUNCTION GENERATOR. 
 

 
 

Figure 6:building a “wave analyzer” 

 

31. Once again construct the following arbitrary waveform  using the HARMONIC SUMMER 

of the SFP, Experiment 5 TAB. Launch the FUNCTION GENERATOR as well. 
Settings are as follows : 
Cosine amplitudes: 1, 0, 0.5,0,0,1,0,0,0,0 
Sine amplitudes: 0,0.3,1,0,0,0,2,0,0,0 
DC level: 0.5 
Switch “to DAC-0” ON 
SCOPE: Timebase 20ms; Rising edge trigger on CH0; Trigger level=0V 
FUNCTION GENERATOR: Frequency=100Hz, Amplitude=4Vpp, Sine wave selected 
 
32. Move the input to the multiplier which was connected to DAC-1 to the FUNC OUT 
terminal of the FUNCTION GENERATOR . This signal will be a 4Vpp sine wave at 100 Hz. View 
both inputs to the multiplier on the scope. One is the arbitrary waveform, the other is the 100 
Hz sine wave. 
 
Question 17 

What do you notice about their phase relationship ? Is this to be expected ? Explain. 

 

 

 

 
If the inputs are drifting relative to each other then you would expect the product of the 
inputs to also be slowly varying. 
 
33. View the sinusoid and the product, output of the multiplier, at the same time and 
confirm that it is slowly varying. 
 
As it varies it will pass through the point of interest, the interface point that we wish to 
measure. This point occurs twice per cycle lasts creating both are maxima and minima. If we 
detect either the maximum of the minima the absolute value of these will give us the average 

DC value which we require.  
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You may wish to review your understanding of why these maximas and minimas occur when 
signals drift relative to each other. You can use both trigonometry and/or the DAC outputs and 
the MULTIPLIER module to revisit this topic. 
 
34. Now view both the output from the FUNCTION GENERATOR  and the output of the 
TLPF. Adjust the frequency of the TLPF to isolate only the DC component and confirm that it 
has a maxima and a minima. HINT: if the DC value is varying too slowly, or you are impatient, or 
just inquisitive (…a good thing), increase the frequency at the function generator by 1 Hz. This 

will make your DC value vary at a rate of approximately 1 Hz. Trigger on the sinewave from the 
FUNCTION GENERATOR for a stable display. 
 
35. Vary the frequency of the function generator in steps of 100 Hz starting from 100 Hz 
up to 700 Hz. Note the maximum value of the DC output in the table below. It will be more 
accurate to measure peak to peak and then halve it.These will be the measured amplitudes of 
the constituent harmonics making out the arbitrary wave form. How do they compare with the 
actual amplitude value entered into the SFP itself.? 
 
 

Table of measured coefficients 

 
Question 18 

Can you explain if your readings differ in some places from the actual value ? 
HINT: you have one value per harmonic instead of two. Consider the previous discussion above 
about resultants in your answer. And to allow for MULTIPLIER and TLPF gains. 
 

 

 

 
Whilst the theoretical modeling with the synchronized sine and cosine waves from the previous 
part is able to yield the constituent sine and cosine components, a real world signal without the 

Input  

frequency (Hz) 

TLPF output 

pp swing (V) 

Half of 

pp (V) 

Entered 

values 

Calculated 

resultant (V) 

100     

200     

300     

400     

500     

600     

700     

DC (V) =     
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benefit of synchronization can only measure the resultant amplitude. This is shown in the 
exercise just completed. 
 
36. This section of the experiment was about building a manually swept spectrum analyser. 
The function generator instrument has the ability to be automatically swept. As an exercise in 
automation enter an appropriate start, stop frequency, say 101 & 1001 Hz, as well as step size of 
100 Hz and a step interval of 2 seconds and allow the function generator itself to sweep the 
analysing frequency while you view the amplitude of the DC value from the analyser which 

corresponds to the amplitude of each harmonic present. Display the FUNCTION GENERATOR 
sinewave also, and trigger the scope on it for a stable display of 4Vpp. Set the AUTOSCALE to 
OFF.  
Congratulations, you have just constructed a swept spectrum analyzer using basic mathematical 
blocks. 
 
Part 4 – analyzing a square wave 

 
We will now use our manually swept spectrum analyser to investigate which harmonics at present 
in a square wave. The experiment set up is as for the previous section except that now the input 
is taken from the PULSE GENERATOR module output. 
 

 
 

Figure 7: working with a square wave 

 
37. Vary the patching as shown in figure 7 above 
. 
Settings are as follows: 
FUNCTION GENERATOR: Frequency=100Hz, Amplitude=2Vpp, Sine wave selected 

PULSE GENERATOR: FREQUENCY=100Hz, DUTY CYCLE=0.5 (50%) 
SCOPE: Timebase 20ms; Rising edge trigger on CH1; Trigger level=0V 
 
38. Vary the frequency of the function generator in steps of 100 Hz starting from 100 Hz 
up to 700 Hz. (Remember, you can vary the input frequency by 2 Hz to speed up the resultant 
DC oscillation  display).Note also the maximum value of the DC output in the table below. These 
will be the amplitudes of the constituent harmonics making up the squarewave. You may know 
from theory that a square wave of 50% duty cycle contains only odd harmonics. This can help 
you focus your investigation around the appropriate frequencies. 
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Table of measured coefficients for squarewave 

 
Question 19 

Why are some of the harmonics hard to detect ? 
 

 

  

 
Varying the duty cycle of the PULSE GENERATOR from the SFP control “DUTY CYCLE”, for 
example to 0.2 (20%) will introduce even harmonics.  
 
Question 20 

Can you now detect even harmonics in the squarewave of 20% duty cycle  ? 
 

 

 

 
View the output from the MULTIPLIER to see what signal you are measuring and extracting the 
DC value from. 
 
Comparing measured Fourier series coefficients to theory 

 

From the theory the relative value of the  Fourier series coefficients for a 50:50 square wave 
is a series like so: 
 
1, 1/3, 1/5, 1/7….1/n where n is the odd harmonic present in the squarewave. 

Input  

frequency (Hz) 

TLPF output 

amplitude (V) 

Scaled measured values 

(V) 

Calculated 

resultant (V) 

100    

200    

300    

400    

500    

600    

700    

DC (V) =    
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Question 21 

Compare your measured coefficients for the first 4 odd harmonics as ratios to that expected 
by theory ? Remember to normalize the measurements for the comparison. 
 

 

 

 

 

 

References 
 
Langton.C.,”Fourier analysis made easy ”, www.complextoreal.com 
 

http://www.complextoreal.com/
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Experiment 11 – Poles and zeros in the Laplace domain  

 
Achievements in this experiment 
 
You will discover how poles and zeros can be used to visualize frequency responses graphically at 
a glance, in a minimal-math zone.  You will be able to use this knowledge to intuitively design low 
order continuous-time responses.  You will be ready to extend this concept to higher order 
systems, and discrete-time applications 
 

Preliminary discussion 
 
In the early days of linear system design, long before the advent of programmable computing, 
numerous graphical techniques were invented to get around the arithmetic tedium required to 
calculate system responses.  One of these is the pole-zero technique.  A century on, this scheme 
has remained in the system engineer's tool kit because it provides a medium for the intuitive 
visualization of system behaviour, especially in regard to stability and sensitivity.  And, with 
some circuit structures, there is a bonus: by observing the movement of the poles and zeros, 
you can intuitively predict system response variations as components are tuned. 
 
Part 1: We examine the behaviour of lowpass and bandpass responses generated with the 
second order feedback system in Fig. 1 in the context of poles and zeros. 
 
Part 2: The findings in Part 1 are extended to create special filters realized with the feedback-
feedforward system in Fig. 2.  The pole-zero paradigm is applied to discover intuitive 
interpretations of the associated equations. 
 
Part 3:  We discover how maximally flat and critically damped responses are generated.  
 
It should take you about 60 minutes to complete this experiment, not including the preparation 
to be done before the hands-on lab work. 
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Pre-requisite work 
Preparation will be required in order for the hands-on lab work to make sense. This guided 
preparation is a revision of theory you will have covered in lectures and is presented below as a 
number of computation exercises. This work should be completed before attempting the lab. 
 
Question 1 
For the system in Figure 1, obtain a differential equation relating the output x0(t) and the input 
u(t).  Show by substitution that x0 = e

jωt is a solution and determine the corresponding input u(t) 
that produces this output. 

 

 

 

 

 
 
If you are uncomfortable with a complex-valued function to represent the behaviour of a 

system that is supposed to operate with real-valued signals, x0 = cos(ωt) or sin(ωt) could be 
used.  However, you will quickly discover that the exponential function has a very useful 
property that simplifies the math considerably.  Remembering that cos(ωt) is Re{ ejωt}, you can 
carry out the analysis with ejωt then simply take the real part of the result.  Practitioners 
generally don't bother with the formality of taking the real part.  Moreover, complex valued 
signals are easily realized in digitally implemented systems, and indeed, frequently used, for 
example in modulators and demodulators of dial-up modems. 
 

INPUT 

u 

x 1 x 2 x 
0 

-a 1 

-a 
0 

 
 
Figure 1: schematic of 2nd order integrator feedback structure without feedforward. 
 
Question 2 
From the above, with x0 = e

jωt, obtain an expression for the ratio x0/u as a function of jω (not 
just "ω"; the reason for this will emerge shortly).  Note that this ratio is complex valued.  Then, 
obtain its magnitude and phase shift as functions of ω (not jω). 
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Question 3 

 From the results in Question 1 above, plot the magnitude |x0/u| versus ω (radians/sec) for the 
case a0 = 0.81, a1 = 0.64 .  Note that there is a progressive fall off as ω increases.  Hence, we 
can think of this system as realizing a lowpass filter.  
 

          

          

          

          

          

          

          

          

          

          

     Graph 1:response plot 
 
Question 4 
We now consider an alternative way of getting the response.  With a little algebra we create a 
graphical medium that will provide an intuitive environment for visualizing and generating both 
magnitude and phase responses. 

First, return to the expression for x0/u obtained in (a) and replace "jω" by the symbol "s". Look 
upon s merely as a convenient stand in for jω.  It is not necessary to ascribe any deeper 
significance to this substitution for the purposes of this lab.  The result is the (complex-valued) 
rational function 

   x0/u = H(s) =  1/(s
2 + a1.s + a0)      (Eqn 1). 

 

For the case a0 = 0.81, a1 = 0.64 (as in (b), express the denominator quadratic in the factored 

form (s - p1)(s - p2), where p1 and p2 are the roots. Show that these are given by 

 

   p1 = 0.9(cos(110.8°) + j.sin(110.8°)) = 0.9exp
j0.616π  

    p2 = 0.9(cos(110.8°) - j.sin(110.8°)) = 0.9exp
-j0.616π           (Eqn 2). 

 



 
Experiment 11 – Poles & zeros in the Laplace domain   ©  Emona Instruments 11-5 

 

 

Question 5 
 
Express the complex points p1 and p2 from equation 2 above as the non-exponential complex 
form of a + ib, that is, with a real and imaginary part.  

 

 

 
 
Question 6 

Next, we look at a graphical approach for evaluating the factors (s - p1) and (s - p2).  Place 

crosses  ("x") on a complex plane at the locations corresponding to p1 and p2, as obtained in (c) 

above.  Place a dot at the point 1.2 on the j axis, i.e., the complex value jω = j1.2 .  Join this point 
and the crosses at p1 and p2 with straight lines.  Satisfy yourself that the lengths of these 

joining lines are |jω - p1| and |jω - p2|.  Noting that 1/|H(jω)| is the product of these two 
magnitudes, estimate |H(j1.2)|. 
 

          

          

          

          

          

          

          

          

          

          

 
Graph 2: vector subtraction  
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Question 7 
 Use the idea above to obtain estimates of |H| at other frequencies and thus produce a sketch 
graph of |H| over the range 0 to 5  radian/s. (ie: ω will range from 0 to 5). Notice that the 
presence of a peak in the response is obvious from the behaviour of the vector from p1 as the 
dot on the j axis is moved near p1.  Note that this vector has much greater influence than the 
other vector, especially near the peak.  Compare this estimate with the computed result you 
obtained in (b). Plot at least 4 points over this range, choosing your points to reflect the 
important characteristics of this response. 
 
Explain why the vector from p1 has a greater influence on the peak of the response. 

 

 

 

          

          

          

          

          

          

          

          

          

          

 
Graph 3:plot the calculated magnitude response |H(jw)| 

 
Question 8 

The roots p1 and p2 of the denominator polynomial of H(s), marked as crosses on a plane of the 

complex variable s are known as poles of H(s).  Note that in the example case, p2 is the complex 

conjugate of p1.  Why is this so? 
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Question 9 
Derive Eqn1 from the schematic (block) diagram, Figure 1, without using the differential 
equation step.  That is, treat the integrator as a "gain" of value 1/s and process the equations as 
algebra. 

 

 

 

 

 
Question 10 
 Next we proceed to the system in Fig 2.  Note that this is a simple extension of the feedback 
only system in Fig. 1.  Use Eqn 1 to obtain the output/input equation y/u ,  
 

 y/u = H_y (s) = (b2.s
2 + b1.s + b0)/(s

2 + a1.s + a0)  Eqn3 
 

(i) Consider the case b0 = 2.0, b1 = 0, b2 = 1.0 .  Show that the roots of the numerator for these 

coefficients are z1 = 0 + j1.414,  z2 = 0 - j1.414 . Place an "o" on these points on the same s plane 

diagram you used to mark the poles, Graph 2. The roots of the numerator are known as "zeros". 

 

 

 
 

x 
 

2 
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Figure 2:  schematic of 2nd order integrator feedback structure with feedforward 
combiner. 
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Question 11 
 Using the zeros with the method from Question 6, carry out the graphical estimation of the 
numerator of Eqn 3 at s = j1.2. Note that this is a special case, with the zeros located on the j 

axis (since b1 = 0).  Hence, the lines joining the point jw and the zeros will lie on the j axis. 

Combine the numerator and denominator estimates to obtain |H_y(j2)|.  Extend to other values 
of w, and sketch the magnitude response |H_y(jω)|.  Comment on the presence of a null at ω  = 
1.414. 

 

 

 
Question 12 
 (optional) Compute |H_y(jω)| from Eqn 3 and assess the quality of the estimate based on poles 
and zeros.  

 

 

 

 

 
Question 13 

With a0 and a1 as in Question 3, apply the pole-zero method to obtain approximate graphs of the 
magnitude response for the following cases: 
 

 b1 = 1, b0 = b2 = 0 

 b2 = 1, b0 = b1 = 0 

 b2 = 1, b1 = −a1, b0 = a0 
 b2 = 1, b1 = 0, b0 = a0 
 
State the name of the response type corresponding to each case (e.g., bandstop, allpass, etc).  

For the allpass case, plot the phase and/or group delay response (group delay = − d(phase)/dω).  
Find out and note here an application for the allpass response. 
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Graph 4: various responses 

Question 14 
The integrators in Figs 1 and 2 were depicted as having unity gain.  A practical realization 
normally has an associated gain constant.  The corresponding integrator equations have the form 
 

x0  = k . ∫(x1) dt 

x1  = k . ∫(x2) dt 
 
Note that k is not dimensionless.  Its unit is sec-1.  The SIGEx INTEGRATOR modules provide a 
choice of four values of k, selectable by means of on-board switches. The switches are labelled 
“INTEGRATION RATE” and the selection and associated value is displayed on the SIGEx SFP. 
Suppose k = 12,500 sec-1 is selected.  Modify the frequency scale for the response in (b) above 
to reflect this choice of k. Explain your reasoning here. 
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Equipment 
 
�  PC with LabVIEW 2009 (or higher) & “Digital Filter Design” toolkit installed 

�  NI ELVIS 2 or 2+ and USB cable to suit 

�  EMONA SIGEx Signal & Systems add-on board 

�  Assorted patch leads 

�  Two BNC – 2mm leads 

 
Procedure 
Part A – Setting up the NI ELVIS/SIGEx bundle 
 
1. Turn off the NI ELVIS unit and its Prototyping Board switch. 
 
2. Plug the SIGEx  board into the NI ELVIS unit. 
 
Note: This may already have been done for you. 
 
3. Connect the NI ELVIS to the PC using the USB cable. 
 
4. Turn on the PC (if not on already) and wait for it to fully boot up (so that it’s ready to 
connect to external USB devices). 
 
5. Turn on the NI ELVIS unit but not the Prototyping Board switch yet. You should observe 
the USB light turn on (top right corner of ELVIS unit).The PC may make a sound to indicate that 
the ELVIS unit has been detected if the speakers are activated. 
 
6. Turn on the NI ELVIS Prototyping Board switch to power the SIGEx board. Check that 
all three power LEDs are on. If not call the instructor for assistance. 
 
7. Launch the SIGEx Main VI. 
 
8. When you’re asked to select a device number, enter the number that corresponds with 
the NI ELVIS that you’re using. 
 
9. You’re now ready to work with the NI ELVIS/SIGEx bundle. 
 
10. Select the EXPT 11 tab on the SIGEx SFP. 
 
Note: To stop the SIGEx VI when you’ve finished the experiment, it’s preferable to use the 
STOP button on the SIGEx SFP itself rather than the LabVIEW window STOP button at the 
top of the window. This will allow the program to conduct an orderly shutdown and close the 
various DAQmx channels it has opened. 

 

Ask the instructor to check
your work before continuing.
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The experiment 
 

Part 1 – System with feedback only 
 
We will use the SIGEx model in Fig.3 . This is an implementation of the feedback system in Fig.2  
 

 
 

Fig 3: SIGEx model of second order feedback system 

 
11. Patch up the model as shown in Figure 3. 
Settings are as follows: 
INTEGRATION RATE:  Switches to ON/ON ( k = 12,500) 
ADDER GAINS: a0=-0.81; a1=-0.64; a2= +1.0 
FUNCTION GENERATOR: Sinewave selected, FREQUENCY=1k; Amplitude= 2V pp 
SCOPE: Timebase 10ms; Rising edge trigger on CH0; Trigger level=0V 
 
Special notice re nomenclature:  The feedback and feedforward gains are implemented with the 
SFP gain controls of the dual triple-input ADDERs on the SIGEx board. We will always refer to 
the symbols a0, a1, a2, b0, b1, b2, as depicted in Figures 1 and 2.  These symbols have been used in 
almost all popular textbooks over many decades. 
 
NOTE: When first wiring up this system, and after setting up the gains correctly, the output 
may appear “stuck” at the power supply limits eg: 10-11 V. In this case the integrator is 
“saturated” and needs to be discharged. To do this, briefly connect a lead from the saturated 
output you are viewing, to a GND terminal on the SIGEx board. This will discharge the output to 
0V, and the integrator will then perform normally. 
 
Question 15 
Measure and plot the gain frequency response at the output of the second integrator (x0) onto 
Graph 5. Confirm that this is a lowpass response similar to the theoretical predictions you 
obtained in prep item (Q3) (the rescaling of the frequency axis will be calculated next). Note 
the -3dB cut-off frequency and the frequency at which the response drops to -30dB. Measure 
the overshoot (if any) and note the frequency of the peak.  
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In the theoretical preparation we had an integrator gain of unity and rad/sec as the frequency 
unit.  Hence, to carry out the rescaling you will need to convert from rad/sec to Hz, in addition 
to multiplying by the integrator gain (prep item (Q14)). 
 

To convert from angular frequency, ω in rad/sec to frequency, you multiply by 2π. (Remember, 1 
complete revolution, 1 cycle, 360°, is 2π radians). 
 
Since the theory had a theoretical integration rate of 1, and our real circuit integrators has an 
integration rate of approximately 12,500, we must multiply the frequency value by the 
integration rate of 12,500. This gives the scaled, non-normalised, real circuit frequency value. 
 
Although you may have already measured the actual integration rates on the SIGEx board in a 
previous experiment, it is worthwhile to repeat this measurement again to ensure your values 
are as accurate as possible. 
 
The integrator gains are readily measured by means of a balanced squarewave as input to the 
open loop integrator.  This produces a sawtooth waveform at the integrator output (there may 
be a DC offset in the output; it is of no consequence in this measurement).  A balanced 
squarewave can easily be obtained from the FUNCTION GENERATOR.  
Settings are as follows: 
FREQUENCY = 1kHz 
AMPLITUDE= 2Vpp 
DC OFFSET = 0V 
Select SQUARE wave output 
 

 
 

Fig 4: SIGEx model for measuring Integration Rate 

 
 

 
Fig 5: typical scope display during measurement  
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12. Patch together as mentioned above and view a single segment of waveform. Measure the 
rate of this segment, ie: rise/run as the units V/s and note here. Ensure that you use a segment 
of waveform which allows you to take an accurate measurement. Avoid signal segments which 
have reached the supply rails as these will be more difficult to measure. As well, note the exact 
voltage level of the input signal for the duration of the ramping signal. (In this setup it will be 
1V, hence you will be dividing by 1.) 
 
Question 16 
Calculate the integration rate as (rise(V)/run(s)) / input voltage (V). The units for integration 
rate are sec-1. Repeat your measurement for a falling ramp and confirm that the magnitudes are 
equal. Compute rates for all 4 switch positions in case you need this information later on. 

 

 

 
13. Next, plot the poles of this system:  apply the method in Questions 3 and 4 (you will find 
it convenient to calculate the poles on the basis the normalized transfer function first, and then 
denormalize the frequency scale in a separate step). Show the values of the real and imaginary 
parts, and the radius (√a0) relative to the origin of the s plane.  Use the method in prep item 
Question 4 to estimate the magnitude response and verify that the key features match the 
location of the poles (eg. overshoot, bandwidth).   
 

          

          

          

          

          

          

          

          

          

          

Graph 5: poles and magnitude response 
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14. To contrast with the lowpass response at node x0, we consider and measure the gain 
frequency response at node x1, the output of the first integrator.  You will discover that this is 
a bandpass response.  
 
 
Question 17 
Measure the frequency of the response peak, the 3dB frequencies, and hence, the 3dB 
bandwidth. 

 

 

  
15. Next, we examine this response in the context of the pole-zero diagram. Briefly return 
to prep item (c) to obtain the transfer function for output at x1. In setting up the differential 
equation you will already have shown that x1 is the time derivative of x0, hence x1 = jω.x0, or s.x0. 
Hence the transfer function for x1 has the same denominator and poles as x0.  The only 
difference is in the numerator, which changes to s, introducing a zero at s = 0.  On the basis of 
the pole-zero diagram, demonstrate that the frequency response for output at x1 must be 
bandpass.  
 
Question 18 
Calculate the geometric and arithmetic means of the 3dB frequencies.  Compare this with the 
peak frequency.  Consider which of these gives the closer agreement.  This is not easy to 
resolve as the peak is quite flat, and pinpointing it can be challenging. It turns out that for this 
type of second-order system the peak is at the geometric mean of the 3dB frequencies (see Tut 
Q.2).  Since these can be measured more accurately, this provides a better alternative for 
measuring the resonance frequency. From Tut Q.2 it is readily shown that this formula is not 
restricted to a 3dB bandwidth criterion.  You may like to put this to the test, e.g. for the 6dB 
frequencies. 

 

 

 
 
Question 19 
In Tut Q.2 it is shown that the bandpass response peak is at (√a0) rad/sec.  Using this formula 
and measurement results obtain an alternative estimate of the scaling factor, and compare this 
with the results of the integrator gain measurements in T1.3.  Consider which of these is the 
more reliable . 
Record these results for use in Tut Q.2. 
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16. With the setup as in section 15, keeping a1 undisturbed, vary a0, around 10 percent, and 
observe the effect on the resonance frequency and bandwidth. You may wish to use the manual 
GAIN ADJUST knob on the SIGEx board to vary each parameter in turn. Remember to setup 
its range to suit your parameter. (Use of the GAIN ADJUST feature is covered in the SIGEx 
User Manual as well as Experiment 2). 
 Repeat this with a1, keeping a0 contant near its original setting.  Satisfy yourself that a0 
controls the peak frequency, without affecting the bandwidth.  Likewise, observe that a1 
controls the bandwidth without affecting the peak frequency.   
 
Question 20 
Consider practical uses of these properties and record your comments. 

 

 

 
17. Plot the locus of the poles corresponding to the above tests.  Interpret your findings 
graphically in terms of the pole positions, e.g. the real part is a1/2.  These considerations are 
explored theoretically in Tut. Q2. 
 

          

          

          

          

          

          

          

          

          

          

 
Graph 6: locus of poles 
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Examining the impulse response of the LTIC system 
 

 
 

Fig 6: SIGEx model for impulse response of system  

 
Settings are as follows: 
PULSE GENERATOR: 400 Hz with DUTY CYCLE=0.05 (5%)  
INTEGRATION RATE:  Switches to ON/ON ( k = 12,500) 
ADDER GAINS: a0=-0.81; a1=-0.64; a2= +1.0 
SCOPE: Timebase 4ms; Rising edge trigger on CH0; Trigger level=1V 
  
18. Display the output of the PULSE GENERATOR on SCOPE CH0 and x0 on SCOPE CH1. You 
should be able to view 1 instance of the impulse clearly. Reduce a1 to decrease the damping of 
the response, so that several cycles of decaying oscillation are displayed, as per Figure 7. 
 
You may wish to use the manual GAIN ADJUST knob on the SIGEx board to vary this 
parameter. Remember to setup its range to suit your parameter.  
 
Question 21 
Record your value of a1 here as you will need it later. 

 

 

 
Measure the interval between zero crossings (or peaks) to obtain an estimate of the frequency. 
Record this value for comparison with a frequency domain measurement after completion of 
T1.8. 
Progressively reduce a1 further, until it reaches its minimum value of 0, and observe the effect 
on the decay rate of the oscillatory ("ringing") response (a0 is to remain undisturbed).  
 
Question 22 
Record your observations. 
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Fig 7: impulse response of system for reduced a1 coefficient 

 
If slowly decaying ringing is still present with the a1 level set to 0, continue to slowly increase 
its value in a positive direction ie: positive gain.  
At some point the decaying oscillations will be replaced by sustained self oscillations. Confirm 
that these oscillations remain when the input is disconnected and measure the frequency.  
 
Question 23 
Record your findings. 

 

 

 
 
19. Measure the peak-to-peak amplitude (adjust the gain control of the scope as needed).   
Plot an approximate locus of the poles. Label the points at which any observations of interest 
occur in the shape of the response.  Comment on the behaviour of the impulse response when 
the poles have positive real part. 
You may find that the onset of instability does not occur exactly at the value of a1 that you 
would expect from theory.  Consider practical issues that may cause this. 
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Graph 7: pole locus with varying a1 coefficient 

 
Question 24 
Return to the setup in Fig. 3 and with a0 back to the same position as in step 18, recorded in 
Q21, measure the resonance frequency at point x1 (the bandpass filter output).  Compare this 
result with the time domain frequency measurements of the impulse response oscillations. 
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Part 2 – Feedback and feedforward 
 
In this Part we experiment with ideas introduced in prep items Q10-13. 
 
20. Using the model of Fig. 3 that you patched up in Part 1, use the “b” ADDER on the SIGEx 
board to implement the feedforward gains b2, b1, b0 as follows: 
[b2, b1, b0] = [1, 0, 2]  
[a2, a1, a0 = [1, -0.64, -0.81] 
INTEGRATION RATE: DIPs set to UP:UP 
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Figure 8:  schematic of 2nd order integrator feedback structure with feedforward combiner (from 

preparation section of experiment) 

 
 

 
 

Fig 9: SIGEx model of second order feedback system 
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  21. Measure the gain response at y and compare with the results in prep Questions 10-12. 
Note that this response is lowpass. The zero at j1.41 produces a null at this frequency.  Compare 
this response with the allpole response of x0 obtained in Part 1. In particular, examine the 
trade-off between depth of attenuation in the stopband and cut-off rate in the transition band. 
Confirm the frequency of the null. Plot the response on Graph 8. 

 
 

          

          

          

          

          

          

          

          

          

          

 
Graph 8: response 

 
Question 25 
Decrease b0 progressively and observe that this causes a reduction of the gain at low 
frequencies.  Continue until the gains at low and high frequencies are close to equal.   
You may wish to use the manual GAIN ADJUST knob on the SIGEx board to vary this 
parameter. Remember to setup its range to suit your parameter.   
Check that the null is still present. This realizes a bandstop filter, also known as a "notch" filter.  
Measure b0 (and a0 in case it was altered). Verify that b2 is still set to unity. 
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Question 26 
Show that this response is obtained when b0 = a0 (with b2 = 1). This can be done quickly using Eqn 
3 in prep Question 9: at low frequency, substitute s = 0; at high frequency use 1/s = 0. 

 

 

 
 
Question 27 
From prep Question 11 we expect the deepest notch when b1 is zero. Examine whether this is 
the case in your implementation. Vary b1 above and below zero and find the value that gives the 
deepest notch. Suggest why there may be a discrepancy between theory and practice. 

 Check the integrator gain by comparing theoretical and measured values of the null frequency.  
Consider possible practical causes for any discrepancies. 

 

 

 
 

Question 28 
Select a different integrator constant: suggested dip switch position DOWN UP  (i.e k around 
29,000/s) and measure the new null frequency.  
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The ALLPASS circuit 
22. Using the same model of Fig.8 that you patched up in Part 2, restore the ADDER gains 
as follows: 
[b2, b1, b0] = [1, 0, 2]  
[a2, a1, a0 = [1, -0.64, -0.81] 
INTEGRATION RATE: DIPs set to UP:UP 
Gradually vary the b1 value from 0 in a negative direction and observe the depth of the notch 
decrease. Continue until there is no dip. Carefully trim b1 for a response that is flat across the 
entire frequency range. You may wish to use the manual GAIN ADJUST knob on the SIGEx 
board to vary this parameter. Theoretically, the condition for this response ("allpass") is b1 =  a1 
(with b0 = a0 and b2 = 1). Suggest why the theoretical condition may not be satisfied in the 
hardware if there are discrepancies. 
 
Plot the poles and zeros and show graphically that the magnitude response is allpass (refer to 
prep item Q13), on Graph 9. 
 
Question 29 
Measure and plot the phase shift vs frequency and, again compare with your expectations from 
the pole-zero plot, on Graph 9. 
 

          

          

          

          

          

          

          

          

          

          

 
Graph 8:allpass responses 
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Viewing frequency responses using FFT 
 
Having measured several responses by taking individual single frequency measurements, you  can 
understand that it is worthwhile implementing a more automated methodology for viewing 
system responses across a spectral range. By using a multi-frequency input signal one can view 
the output of a system with an FFT display and see the complete frequency response of the 
system. A suitable  input signal is a pseudo-noise signal with a flat spectrum at the frequencies 
of interest. This signal was investigated in a previous experiment (Experiment 9) and so will not 
be discussed in detail here. 
 

 
Figure 10: example output spectrums for feedback and feedforward system  

with multi-frequency input signal 
 
23. Patch together the input noise signal as shown in Figure 11 and view the output of the 
system with the scope, by using the scopes FFT display. Settings are as follows: 
PULSE GENERATOR: Frequency = 30kHz, Duty cycle=0.5 (50%) 
TUNEABLE LPF: Corner frequency set to approx. 3kHz 
SCOPE: Timebase : 100ms 
 

 
 

Figure 11: SIGEx model for a multi-frequency, flat spectrum signal source. TUNEABLE LPF Fc 
generally set to 10-15% of CLK frequency for flat response 

 
 
24. Repeat several of the previous exercises with this method and compare your 
observations with your previous findings. You will find the exercises involving the use of the 
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GAIN ADJUST knob to be particularly interesting and dynamic, as you can explore the 
interaction of parameters in real time. 
 
Switch to TAB “ZOOM FFT” for a more detailed display of the time & frequency domains. 

 
Part 3 – Critical damping & maximal flatness 
 
You may have come across the terms "maximally flat" and "critically damped". To explore these 
ideas we return to the allpoles lowpass filter used in Part 1.  Although the feedforward 
subsystem is not required, there is no need to alter the setup you have been using in Part 2 as 
we will be ignoring the feedforward output. Notice that the feedforward section has no impact 
on the performance of the feedback section. 
 
25. Set the “a” ADDER gains as for Part 1 of this experiment, as follows: [a2, a1, a0] = [1, -
0.64, -0.81]. Display the lowpass output x0, and carry out a quick scan of the gain response with 
the FUNCTION GENERATOR set to a sinewave output.  Note the significant overshoot at the 
high end of the passband.  Gradually vary the a1 gain control and watch the reduction in 
overshoot.  Continue until the overshoot is barely observable.   Don't forget to check for any 
variation of input amplitude that may affect your observations.  
 
Question 30 
Record the values of a0 and a1 that realize this outcome.  This response is known as maximally 
flat.  In Tut Q.8 you are invited to show that the formula for a maximally flat second order 
allpole is a1 = √(2.a0). 

 

 

 
26. Critical damping is a condition that pertains to the step response.  To generate a step 
response we use a low frequency squarewave as input from the PULSE GENERATOR.  
Settings are as follows: 
PULSE GENERATOR: 400 Hz with DUTY CYCLE=0.5 (50%)  
INTEGRATION RATE:  Switches to ON/ON ( k = 12,500) 
ADDER GAINS: a0=-0.81; a1=-0.64; a2= +1.0 
SCOPE: Timebase 400us/div; Rising edge trigger on CH0; Trigger level=1V 
 
Display x0 and the input squarewave and observe the overshoot in x0.  Progressively increase a1 
until the overshoot is barely observable.  You may wish to use the manual GAIN ADJUST knob 
on the SIGEx board to vary this parameter. Remember to setup its range to suit your 
parameter.   
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Figure 12: example underdamped and critically damped step responses  

 
Question 31 
Record the values of a0 and a1 that realize this outcome.  This response is known as critically 
damped.  It is of interest in control systems as it realizes the most rapid risetime without 
overshoot.  This idea also finds application in the context of Gaussian filters.  Further 
exploration of critical damping is provided in Tut. Q.9. 
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Tutorial questions 
 

Q1  From prep item (c): determine the position of the pole p1 in terms of the coefficients a0 
and a1, i.e., show that with p1 expressed in polar form p1 =  ρ.exp(j.θ), we have 

   ρ = sqrt(a0) and  cos(θ) = a1/2 ρ 
 

Q2    Allpole bandpass filter: 
         a.        Derive the transfer function and squared magnitude response formula for the second 

order resonator in Fig. 1. Obtain the conditions for the poles to be complex valued; show this 
graphically, i.e., on a plane with axes a0 and a1. 

         b. Show that there is a magnitude response peak at w0=sqrt(a0) (hint: save time and effort: 
use the reciprocal of the response formula;  manipulate this to reveal a simple and quick method 
without differentiation!). 
c. In the Lab you discovered that a0 tunes the resonance frequency, and a1 controls the 
bandwidth with almost no interaction. Confirm this serendipitous property analytically (hint:  the 
result in part a of this question). 
d.   Derive the 3dB points and show that the bandwidth is given by a1(subject to conditions for 
complex poles being satisfied).  Show that the product of the 3dB frequencies is equal to the 
square of the resonance frequency w0  (i.e.,equal to a0). 
Hint: inspect the simple formula that revealed the peak. Look for terms of the form (w – 1/w)2  
e.   Apply these results to the measurements in T1.4. 

 
Q3   State the coefficient conditions to realize an allpass. It would be useful to have an allpass 
realization in which the values of a0 and b0, and of a1 and b1  are implemented by single controls, 
respectively.  Show how Fig 2 can be modified to achieve this. Indicate a possible practical 
difficulty with this idea (Hint:  refer to your findings in T2.7). 

 
Q4 Obtain the theoretical phase and group delay responses for the allpass in T2.7. 
 
Q5 As mentioned in T2.6, switched-capacitance filters (SCF) are used in the SIGEx TUNEABLE 
LOWPASS FILTER.  Find out how this works and explain how the tuning is implemented in this 
module. 

 
Q6  What is an elliptic filter? Explain how to use the structure in Fig 2 to implement elliptic 
filters. What is the required value of b1?  
 
Q7  Show how the system in Fig. 2 can be used to implement a tuneable notch with a single 
tuning control. Indicate  applications of notch filters 
 
Q8 Derive the conditions for a maximally flat allpole 2nd order LPF (i.e., transfer function, and 
poles).  
 
Q9 Derive conditions for critical damping; does critical damping of the impulse response occur 
at the same pole values as for step response? 
 
Q10  (optional) In this exercise we consider the application of poles and zeros in the design of a 
fourth order BPF as a cascade of two biquad sections  (Fig. 2).  Suppose a centre frequency of 
0.9 rad/s is specified.  The design is to provide two zeros on the j axis, one above the passband, 
one below. 
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a. Plot a suitable pole zero constellation. Estimate the pole positions so that the bandwidth is 
around 0.1 rad/s.  To achieve a flat passband the poles should be slightly offset ("staggered ").  
Note that if they are too far apart, an excessively deep trough will result.  To estimate the 
overall magnitude response, plot estimates of the individual biquad responses on a dB gain scale.  
Use the results obtained in T2.2 as a guide.  Note that one section will be lowpass and the other 
highpass.  Students with access to four LAPLACE modules are encouraged to try this at the lab 
bench.  You will find it very helpful to exploit the orthogonality of a0 and a1 (see Q2) as you trim 
your design. Adjust the placement of the zeros to achieve a practical balance between width of 
transition bands and depth of attenuation in the stopbands. 
 
b.  Note that there are two pole zero pairings available, low pole with high zero, and viceversa. 
The usual criterion for the choice is dynamic range, ie. avoiding  large peaks.  Which is the best 
pairing?   
 
c. Suppose the specification  had called for a bandwidth of 0.02 rad/s.  Consider the practical 
challenges faced by the designer.  One of these is dynamic range at internal nodes. Estimate the 
selectivity that could be realistically achieved with SIGEx LAPLACE modules using the 
structure in Fig 2. Indicate your reasons.  Other biquad structures are available for 
consideration.   These can be found in standard textbooks. 
 
d.  Show a fourth-order system realized as a single stage of the form of Fig. 2. List practical 
issues that should be considered in comparing an implementation of the above filter as a single 
stage versus cascaded biquads. 
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Experiment 15 – Poles and zeros in the z plane: IIR systems 
 

Achievements in this experiment 
 

You will be able to interpret the poles and zeros of the transfer function of discrete-time filters to 
visualize frequency responses graphically at a glance, without math.  You will be able to use this 
knowledge to intuitively design recursive/IIR discrete-time responses.  
 

Preliminary discussion 
 
In Lab 11 we discovered how poles and zeros can be used as an intuitive tool for analyzing and 
designing continuous-time (CT) filters.  Next, in Lab 14 we examined discrete-time (DT) FIR filters 
and found the same ideas could be applied there. The complex "s" plane was replaced with the 
complex "z" plane, and the unit circle used instead of the j axis for the representation of frequency. 
Because zeros only are involved in FIR filter work, this provided a convenient gateway to getting 
started with z-plane ideas. 
 
In this Lab we will investigate more general DT filters that are characterized with both poles and 
zeros.  These filters are known as recursive since they use feedback, and also as Infinite Impulse 
Response (IIR).  With feedback we will be able to realize much higher selectivity than possible with a 
comparable complexity FIR implementation.  The most conspicuous example is the second-order 
resonator, which will open the way to achieving realistic bandpass responses.   As we proceed, we will 
find many parallels with the CT(continuous time) filter experiments in Lab 11. 
 

Part 1:  we examine the behaviour of the basic second-order resonator implemented without zeros.  
 
Part 2: zeros are introduced to generate lowpass, bandpass, highpass and allpass responses using the 
Direct Form 2 structure. 
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Pre-requisite work: 
 

This preparation extends the theory covered in Lab 14 to include poles. 
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Figure 1: schematic of 2nd-order feedback structure without feedforward. 

 
Question 1 

Consider the feedback system in Figure 1. 
   
Show that the difference equation relating the adder output x0(nT) and the input u(nT) is 
 
 x0(nT) = u[nT]  -   a1.x0[(n - 1)T] -  a2.x0[(n - 2)T]      (Eqn 1), 
where nT are the discrete time points, T sec denoting the unit delay, i.e. the time between samples. 
 
Show by substitution that ejnTw is a solution, i.e. show that when x0(nT) is of the form e

jnTw, the input 
u(nT) is ejnTw,  multiplied by a constant (complex-valued);     w  is the frequency of the input in 
radians/sec; (the use of complex exponentials for the representation of sinusoidal signals is 
discussed in Lab 8, 10 and 13. 
 
From the above, with input u(nT) = ejnTw obtain  
 
 x0/u = 1/[ 1 + a1. e

-jTw + a2. e
-j2Tw]      (Eqn 2). 

 
Note that x0/u is not a function of the time index n.  

 

 

 

 

 
Question 2 

Use this result to obtain a general expression for |x0/u| as a function of w.  
  
Tip: to simplify the math, operate on u/x0 instead of x0/u, expressing the result in polar notation. 
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Set T = 1 sec for the time being, and plot the result for the case  a1 = -1.6 , a2 = 0.902 over the range 
w = 0 to π rad/sec.  Label the frequency axis in Hz and in rad/sec. You should find there is a peak in 
the response near 0.09Hz. 

 

 

 
 

          

          

          

          

          

          

          

          

          

          

 
Graph 1:response plot 

 
 
 
 
Question 3 
 Replace "exp(jTw)" by the symbol "z" in Eqn 2.  The result is  
  
 H_x0(z) = x0/u = 1/(1 + a1.z

-1  + a2.z
-2 ) = z2 / ( z2  +  a1.z + a2 )    (Eqn 3). 

 
The quadratic ( z2 + a1.z + a2 ) can be expressed in the factored form (z - p1)(z - p2).   
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Figure 2: Notes on the graphical interpretation of pole-zero plots 
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Reviewing the finding of roots of the quadratic polynomial 

 
From equation 1 above   
x0(nT) = u[nT]  -   a1.x1(nT) -  a2.x2(nT) substituting x1=x0.z

-1 and x2=x0.z
-1.z-1 we arrive at 

x0 = u –a1x0/z
1 – a2x0/z

2 
Grouping x0 terms: 
x0(1 + a1/z

1 + a2/z
2) = u 

 
At this point we can see that although we started with negative gains in the circuit model, we now 
have positive values as coefficients in the quadratic equation. 
 
Further, we arrive at: 
x0/u = z

2/(z2 + a1z
1 + a2) which we earlier named Eqn 3. 

We now have the general quadratic form with positive  coefficients. 
INSIGHT: positive coefficients result in negative gains in the actual implementation 
 
This quadratic (z2 + a1z + a2) can be expressed in factored form, as (z-p1)(z-p2) 
Remember that z, p1 & p2 are complex numbers. You can think of these as vectors: from the origin of 
the z plane to a 2 dimensional point on that plane. 
 
Each factor ie: (z-p1) and (z-p2) is a difference vector between a general point z, who’s locus we 
restrain to the unit circle, and the 2 specific roots p1 & p2. It will be a vector, having direction and 
magnitude, and can be expressed in polar notation as r⁄θ, or rejθ, or in Cartesian notation as (a + ib). 
Both these representation are complex numbers. 
 
If we define p1 as (σ + iw) and its conjugate, p2 as (σ – iw) we can express the quadratic factors as: 
(z- p1)(z- *p1) = z2 + p.*p – pz – *pz 
Switching to polar notation for convenience,  p.*p = rejθ. re-jθ = r2 
So that leaves z2 + r2 –z.(p + *p), and if using Cartesian notation in this instance for convenience, ie. p 
= σ + jw then p + *p = 2σ so 
z2 +(-2 σ)z + r2 = z2 -2 σ z + r2 = z2 +a1z + a2 
 
Relating coefficients gives  a1 = -2σ and a2 = r

2 
 
For stability the poles must always be inside the unit circle, hence  0 < a2 < 1 
 
Changes in a1 directly influence the real component of the pole position 
a2 has a square law relationship with r of the pole. 
Other relationships, such as θ, w, imag part, can be derived from these easily with trigonometry. 
 
The general solution for the roots of the quadratic polynomial x2 + a1x + a2 is:  
x = -a1/2 +/- i√[a2-(a1/2)

2] 

 
With these equations in mind consider how changes in the coefficients from the math will move the 
poles or zeros about the unit circle, and influence the response of the system. 
 
This lab aims to make you more familiar of the interrelationships between these parameters. 
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Using the values of a1 and a2 given in Question 2 above, find the roots p1 and p2 (express the result in 
polar notation).  Mark the position of p1 and p2 on the complex z plane with an "x" to indicate that 
they represent poles. The distance between these points and the unit circle is of key importance.   
 
This is a parallel process to that in Lab 11 where we plotted zeros.  A similar procedure was carried 
out in Lab 11 for a CT transfer function in the complex variable s. 
 
Write down a formula for p1 in terms of a1 and a2.  Note that p1 may be real or complex depending on 
a1 and a2.  Determine the conditions for p1 to be complex valued.  For this case, express p1 in polar 
notation.  Take note of the fact that |p1| does not depend on a1 (this will be useful later). Obtain p2 
from p1. 

 

 

 

Question 4 

Satisfy yourself that the magnitude response of H_x0 is given by 
 
 |H_x0(w)| = 1/[|(e

jTw - p1)|.|(exp
jTw - p2)|]   (Eqn 4). 

 
This provides the key for the graphical method described in Lab 13 to obtain an estimate of the 
magnitude response.  Again, we will use T = 1 .   
 
Plot the magnitude of the denominator for selected values of w over the range 0 to π. The quantity  
|(ejTw - p1)| becomes quite small and changes rapidly as the point on the unit circle is moved near p1.  
Plot additional points there as needed.  Invert to get |H_x0(w)| and compare this with the result you 
obtained in (b). 
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Graph 2:response plot 
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Figure 3:  block diagram of 2nd-order Direct-form 2 structure with feedforward. 
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Question 5 

Modify Fig 1 by replacing the unit delays with a gain of 1/z  and show that Eqn 3 follows by inspection 
using simple algebra.  

 

 

 
Question 6 

Apply this idea to show that the transfer function for the system in Fig. 3 is 
 
  H_y (z) = y/u = (b0 + b1.z

-1  + b2.z
-2 ) /(1 + a1.z

-1  + a2.z
-2 )    (Eqn5) 

 

 

 
Question 7 

Use the graphical pole-zero method (covered in Experiment 14) to obtain estimates of the magnitude 
responses for the following cases (0 to Nyquist freq):  
 
 (i) b0 =b2 = 1, b1 = 2,  a1 and a2 as in Question 2. 
 (ii) b0 = b2 = 1, b1 = - 2, a1 and a2 as in Question 2 
 (iii)  b0 = 1, b1 = 0, b2 = - 1, a1 and a2 as in Question 2 

 

Which of these is lowpass, highpass, bandpass? 
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Graph 3:pole-zero method 

 
Question 8 

Consider a DT system with sampling rate 20kHz.  Obtain estimates of the poles and zeros that 
realize a lowpass filter with cut-off near 3kHz.  Obtain a highpass filter using the same poles. 

 

 

 
Question 9 

For the same sampling rate as in Question 8 obtain estimates of the poles and zeros that realize a 
bandpass filter centered near 3.1kHz, with 3dB bandwidth 500Hz. HINT: review Question 7  
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Equipment 

 

�  PC with LabVIEW 2009 (or higher) & “Digital Filter Design” toolkit installed 

�  NI ELVIS 2 or 2+ and USB cable to suit 

�  EMONA SIGEx Signal & Systems add-on board 

�  Assorted patch leads 

�  Two BNC – 2mm leads 

 
Procedure 

Part A – Setting up the NI ELVIS/SIGEx bundle 

 
1. Turn off the NI ELVIS unit and its Prototyping Board switch. 
 
2. Plug the SIGEx  board into the NI ELVIS unit. 
 
Note: This may already have been done for you. 
 
3. Connect the NI ELVIS to the PC using the USB cable. 
 
4. Turn on the PC (if not on already) and wait for it to fully boot up (so that it’s ready to 
connect to external USB devices). 
 
5. Turn on the NI ELVIS unit but not the Prototyping Board switch yet. You should observe the 
USB light turn on (top right corner of ELVIS unit).The PC may make a sound to indicate that the 
ELVIS unit has been detected if the speakers are activated. 
 
6. Turn on the NI ELVIS Prototyping Board switch to power the SIGEx board. Check that all 
three power LEDs are on. If not call the instructor for assistance. 
 
7. Launch the SIGEx Main VI. 
 
8. When you’re asked to select a device number, enter the number that corresponds with the 
NI ELVIS that you’re using. 
 
9. You’re now ready to work with the NI ELVIS/SIGEx bundle. 
 
10. Select the EXPT 15 tab on the SIGEx SFP. 
 
Note: To stop the SIGEx VI when you’ve finished the experiment, it’s preferable to use the STOP 
button on the SIGEx SFP itself rather than the LabVIEW window STOP button at the top of the 
window. This will allow the program to conduct an orderly shutdown and close the various DAQmx 
channels it has opened. 
 

 
 

Ask the instructor to check
your work before continuing.
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Experiment 
 

Part 1: IIR without feedforward: a second-order resonator 
 
In this part we implement and investigate the system in Fig 1. 
 

 

Figure 4: patching diagram for feedback structure without feedforward from Figure 1 

 
11. Patch up a SIGEx model of the system in Fig 1.  
Settings are as follows: 
ADDER GAINS: a0=1; a1=+1.6; a2= -0.902 
PULSE GENERATOR: 20kHz, DUTY CYCLE=0.5 (50%) 
FUNCTION GENERATOR: Sinewave selected, FREQUENCY=1k; Amplitude= 2V pp 
SCOPE: Timebase = 4ms, Trigger on input signal, Trigger level = 0V 
 
Question 10 

Calculate the poles corresponding to these values.  Measure and plot the magnitude response at the 
output of the feedback adder.  Note and record the resonance frequency and the bandwidth. Use 
the poles to graphically predict these parameters;  compare with your measurements. 

 

 

 
HINT: Do a quick sweep of frequency range, and turn AUTOSCALE off at maximum amplitude, then 
sweep the range more slowly while taking measurements. This will enable you to see the variation in 
gain of the output more easily than with AUTOSCALE on. 
 
Question 11 

Decrease |a1| by a small amount ( around 5-10%, say) and measure the effect on the resonance 
frequency and bandwidth.  Use this to estimate the migration of the poles. Does this agree with your 
expectations? 

 

 

 
 
Question 12 
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Repeat step 3 for a 5% decrease of a2. Compare the effects of varying a1 and a2.  Which of these 
controls would you use to tune the resonance frequency?  Use the formulas you obtained in the 
preparation to explain this. 

 

 

NOTE about TAB “ PZ plot” on the SIGEx SFP. 

 

This panel calculates the poles and zeros relating to the currently set ADDER gains which relate to 
the coefficients of the transfer function. Use this visualization tool to confirm your understanding . 
You may wish to move back and forth between the experiment TAB and the “PZ plot” TAB as 
required during the experiment. 
 

 
 

Figure 5: “PZ plot” TAB from SIGEx SFP 

 
You may wish to use the manual GAIN ADJUST knob on the SIGEx board to vary these parameters. 
Remember to setup its range to suit your parameter. 
 
Question 13 

With a1 unchanged, gradually increase a2 and observe the narrowing of the resonance.  Continue until 
you see indications of unstable behaviour.  At that point, remove the input signal and observe the 
output (if needed, increase a2 a little more).  Is it sinusoidal?  Measure and record its frequency.  
Measure a2.  Calculate and plot the pole positions.  Note especially whether they are inside or outside 
the unit circle.  
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Figure 6: patching diagram for step response 

 
 
12. We will now repeat step 11 in the time domain.  Use the PULSE GENERATOR as a clock 
source and SEQUENCE GENERATOR to set up a unit pulse input.  The SYNC signal from the 
SEQUENCE GENERATOR will act as a repetitive unit pulse source. What matters is that the unit 
pulses are far enough apart that each pulse is a unique event to the system under investigation. 
 
Setting are as follows: 
PULSE GENERATOR: 20kHz, DUTY CYCLE=0.5 
SEQUENCE GENERATOR: DIPS set to UP:UP (short sequence) 
ADDER gains: a0=1.0; a1=1.6; a2=-0.902; b0=1.0 
 
Question 14 

Begin with a2 around -0.9. Describe the effect on the response as the magnitude of a2 reduces.  
Measure the frequency of the oscillatory tail of the response and compare with your observations in 
step 5. 

 

 

 

 
Figure 7: typical pulse response 
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Graph 4:pole only response plot 

 

 
 

Figure 8: Setup with feedforward and feedback sections implemented, as per Figure 9 below
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Part 2 - IIR with feedforward:  second-order filters  
 
In this part we implement and investigate the system in Fig 9. Note that  the system with 
feedforward simply builds upon the previous system with feedback only. It also provides a new 
output point. The system response x0 for the feedback only, all-pole system is still available as a 
subset within this new arrangement and is unchanged by the additional feedforward elements. The 
feedforward elements simply add  numerator terms to the overall transfer function which becomes 
y/u. 
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Figure 9:  block diagram of 2nd-order Direct-form 2 structure with feedforward. 

 
 
13. Use ADDER B in a z-TRANSFORM module to convert the SIGEx model of Part 1 to the 
system in Fig 9. 
 

 
 

Figure 10:  patching diagram for block diagram above 

 
14. Implement case (i) in Prep (Q7). 
Settings are as follows: 
ADDER GAINS: b0=1; b1=2; b2=1; a0=1; a1=+1.6; a2= -0.902 
PULSE GENERATOR: 20kHz, DUTY CYCLE=0.5 (50%) 
FUNCTION GENERATOR: Sinewave selected, FREQUENCY=1k; Amplitude= 1V pp 
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SCOPE: Timebase = 4ms, Trigger level = 0V, Trigger on input signal 

 
 
Figure 11: Using the Function Generator to sweep a sinusoid across the spectrum of interest. 

 
Observation: the high pass band gain due to the selection of coefficients resulting in poles very close 
to the unit circle, as shown in the figure below. 
 
 

 
 

Figure 12: details of the PZ PLOT TAB for the current settings 

(NB: 2 zeros at (-1 +/- 0i) are difficult to see in figure.) 

 
NOTE: The poles are very close to the unit circle. In fact, the pole radius is 0.95. Hence the gain 
close to the poles is very large. You can use the PZ PLOT to visualize the poles and zeros for any 
“live” coefficient settings. Zeros are also present at z = -1. 
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Measure the magnitude response |y/u| and confirm that it is a lowpass filter. 
 

          

          

          

          

          

          

          

          

          

          

 
Graph 5: plot of responses 

 
 
Question 15 

In the model of step 14, adjust a2 to reduce the peaking to a minimum. As well you will need to 
reduce the amplitude of the input signal to 0.5Vpp to reduce saturation. Confirm this for yourself. 
Plot the resulting response and measure the new value of a2. Calculate and plot the new poles. Obtain 
an estimate of the theoretical magnitude response with these poles and compare this with the 
measured curve.  Why was a2 used for this rather than a1? 

 

 

 
 
Question 16 

Change the polarity of b1 in the lowpass of step 19 and show that this produces a highpass.  Compare 
with your findings in Question 7. 
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NOTE: the following three questions refer to the transfer function coefficient values. Remember to 
negate the a1 and a2 values when settings them up as ADDER GAINS. 
 
Question 17 

Repeat for case (iii) in Question 7, that is: b0 = 1, b1 = 0; b2 = -1 ; a0 = 1; a1 =-1.6; a2 =0.902;  Confirm 
this is a bandpass filter.  Tune a1 and a2 to obtain a peak at 3.1 kHz and 3dB bandwidth 500Hz.  
Measure the resulting a1 and a2 and plot the new poles.  Compare this with your findings in Question 
7.  

 

 

 
Question 18 

Implement the following case: a0 = 1, a1 = 0,  a2 = 0.8, b0 = 0.8, b1 = 0, b2 = 1. Note that b0=a2 and b1=a1.  
Measure the magnitude response.  Confirm it is allpass.  Locate the positions of the poles and zeros. 
Plot them below for your records. 

 

 

 
Question 19 

Change a1 and b1 to - 1.6 and confirm the response is still allpass. Examine the behaviour of the phase 
response.  Look for the frequency of most rapid phase variation, and confirm this occurs near a pole. 
Plot the poles and zeros below for your records. 
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Viewing spectrum of system with broadband noise input & FFT 
 

As well as sweeping a single frequency signal  from the FUNCTION GENERATOR across the 
spectrum of interest it is also convenient to input a broad range of frequencies at once and view the 
overall output frequency response of the system.  Creating a broadband analog noise signal was 
covered in Experiment 9. That methodology is shown in the figures below. You can revisit this 
experiment with this setup in place and see the relationships of poles and zeros to system response 
in real time. 
 
 

 
 

Figure 13: IIR filter with flat noise input 
 

 
 

Figure 14: experiment setup with noise input signal instead of Function Generator signal. Uses 

SEQUENCE GENERATOR and TUNEABLE LPF, clocked from PULSE GENERATOR. 
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15. Ensure  that SEQUENCE GENERATOR DIP switches are set to positions DOWN:DOWN for 
the long sequence. Set TLPF knobs to fully clockwise for now. Switch to TAB “ZOOM FFT” to view 
time and frequency domains simultaneously. Change scope timebase to 100ms. 
Set up the coefficients as per step 14. 
 
Setting up the input noise signal: 
 
16. i) Reduce the TLPF GAIN by rotating counter clockwise until the output Ch1 signal (red) is no 
longer saturated ie: less than 12V peak. 
ii) Reduce the noise bandwidth to around 4khz by rotating the TLPF block’s “Fc” control-counter 
clockwise. View the noise spectrum as the white trace on the SCOPE & FFT windows. 
 
The SFP should be similar to Figure 15 below for a peaky LPF as shown. 
 

 
 

Figure 15: ZOOM FFT TAB used to view Experiment 15 setup with flat noise input. 

 

Due to high gain, input noise level is very small. Note the limited bandwidth of the input noise to 
maintain a flat input response. (SEQUENCE GENERATOR must be set to long sequence.) 
 
At this point we can see and explore the issues relating to : 
-controlling our input signal level and bandwidth 
-viewing the response in both time and frequency domains 
-setting up a transfer function with appropriate internal gains 
 
We can also confirm that the peak of the response is correct according to the position of the poles. 
ie: PZ PLOT tells us that poles are at 32 degrees, hence we expect a peak close to 32/360*20,000 = 
1777 Hz. You can use the cursors in ZOOM FFT window to confirm this. 
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Question 20 

Show your calculation of the where you expect the peak frequency to be using the pole position and 
sampling frequency. 

 

 

 
 

Dynamically varying the poles and zeros to adjust response using GAIN 

ADJUST manual control 
 
17. Use the SIGEx board’s GAIN ADJUST knob to vary one of the coefficients by hand while 
viewing the frequency response. Leave the default settings. Turn the knob until it reads +1.6 (located 
in the COEFFICIENT SELECTOR window), then select radio button “ a1 ”. View the frequency 
response while slowly varying the value of a1. You will find that the peak frequency changes. 
 
18.  Find a range of a1 settings that work well and then view PZ PLOT while varying across that 
range. You will see the poles moving and reflecting the changing a1 coefficient. (Theory states that 
a1=-2σ, which is the real part of the pole and its conjugate.)  
 
Question 21 

Confirm this relationship from values displayed on PZ PLOT and show your working here: 

 

 

 
 
19. Set a1 back to +1.6, select OFF, then set GAIN ADJUST to -0.9, and select a2 radio button. 
For more resolution vary the setup parameters as required. 
 
Question 22 

Varying a2 will vary the gain or peak level of the filter. Notice what happens in the time domain when 
a2 = -1.0. The filter breaks into oscillation. View the poles again using PZ PLOT while varying a2. 
(Theory states that a2 = r

2). 

 

 

 
 20. Set a2 back to -0.9, then select OFF again at the COEFFICIENT SELECTOR to disable the 
GAIN ADJUST control. 
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Using Digital Filter Design toolkit to implement Highpass filters 
 
21. Switch to the DFD TAB. This will allow you to automatically load the computed coefficients 
for the selected filter onto the SIGEx board. You can see the values on the TAB setup in the GAIN 
input controls on the SIGEx SFP.  
NOTE: Maintain  the order of your filter structure  <= 2, to match the structure you have built. 
 
22. Connect CH0 to “ x0 ”, and CH1 to “Y” and view the internal signal levels at “x0” by switching to 
the ZOOM FFT tab. Set the TLPF GAIN higher but avoid saturating.These filters have lower 
internal gains than the previous ones. Vary the filter design type (at the DFD tab by clicking on 
“DESIGN METHOD” to select) and view the output responses using ZOOM FFT. 
NOTE: Press the button to transfer the coefficients into the ADDER gains when you are ready to do 
so. 
 
Set timebase to 100ms. 
Again you can use the cursors to compare the actual performance to theory and design. 
 
You can expect to see a display like so: 
 

 
 

Figure 16: Highpass filter response using FFT; x0 (grey); Y (white) 
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Figure 17: DFD TAB used to design filters and setup coefficients to the patched SIGEx board 

 
 
Default values are chosen to enable students to see textbook like responses which they can easily 
measure. 
 
Question 23 

Confirm that the SIGEx hardware performs as designed by theory in terms of notch positions etc. 
You will have to use the zero positions mostly in these cases. Why ? 

Notches are implemented by placement of zeros on or near the unit circle. 

 

 

 

 
Question 24 

Try varying design values and take note of the ORDER of the filter designed. NOTE that the SIGEx 
experiment we have implemented can only support a 2nd order structure. Note your observations. 
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Tutorial Questions 

Q1.  Why do the complex poles and zeros occur in conjugate pairs in the cases covered 
in this lab? 

Q2.  Why is polar notation for complex valued poles and zeros preferred in the 
discrete-time context?  Using examples from the lab, explain the importance of 
the position of complex poles/zeros relative to the unit circle when estimating 
frequency responses. 

Q3.   Re Eqn 3, keeping a1 constant, plot the locus of the upper half plane pole with 
respect to a2.  Do this for several suitable values of a1. Holding a2 constant, repeat 
this with respect to a1.  Use the resulting contours to explain your observations in 
Q11 and Q12 . 

Q4.  Determine the conditions on a1 and a2 for the poles to be complex. Display this 
graphically on a plane (i.e. with a2 = 0 as horizontal axis and a1=0 as vertical axis). 

Q5.  Calculate and plot the poles and zeros in Q19.  Satisfy yourself that they share 
the same radial line. Show that z1 = 1/p1* . 

Q6.   Prove that the values of the coefficients in Q18 and Q19 generate a constant 
magnitude response over all frequencies. Write down the coefficient relationship 
in the transfer function of a fourth-order allpass. 

Q7.  Consider the unit pulse response in Step 12. What is the effect on the decay rate 
as the bandwidth is decreased?  Find a simple formula or rule of thumb to express 
this relationship. 

Q8.  Show that the magnitude responses at nodes x1 and at x2 are the same as at x0 
(can be demonstrated without math). 

Q9.   Consider a bandpass filter realized with a2 = 0.98. What is the maximum deviation 
allowable in a2 to maintain a bandwidth tolerance of 5 percent? 

Q10.   Consider the following assertion: "Continuous-time filters can be considered as a 
limiting case of discrete-time filters, as the sampling frequency to bandwidth ratio 
gets very large".  Hint: show that the poles and zeros migrate to the area near 
(1,0) as the Nyquist ratio increases and compare the shapes of the unit circle and 
of the j axis in that region. 

Q11.   Find out the meaning of the term "maximally flat".  Is this description applicable 
to the filter produced in Q15 by reducing the value of a2? 
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Appendix A: SIGEx Lab to Textbook chapter table 

 
This table aims to direct users to sections of relevant texts which contain theory and exercises 

related to experiments currently documented and implemented with the SIGEx/NI ELVIS bundle. 

Given that SIGEx is by design an open-ended modeling system it is possible to build many more 

experiments than is currently documented.  

Users will find that many exercises from the texts which are currently undocumented in this Lab 

Manual can also be implemented directly with minimum extra documentation.  

Students can easily be directed to implement exercises from texts on the SIGEx board once they 

become familiar with the block diagram modeling approach to building experiments. 

The texts which are currently referred to in this Appendix are: 

Lathi.B.P. , “Signal processing & Linear Systems”,  Oxford University Press 

Oppenheim.A.V.,Wilsky.A.S., “Signals & Systems”, Prentice Hall, 2nd edition 

Haykin, Van Veen, “Signals and Systems”, Wiley, 2nd  edition 

Ziemer.R.E,Tranter.W.H, Fannin.D.R, “Signals & Systems: Continuous and Discrete”, Prentice 

Hall, 4th edition 

Boulet.B.: “Fundamentals of Signals & Systems”, Thomson/Delmar Learning 

McClellan.J.H, Schafer.R.W, Yoder.M.A, “DSP First”, Prentice Hall  



 



 

Lathi.B.P. , “Signal processing & Linear Systems”, Oxford University Press 

 
SIGEx Lab Manual Lathi: text book correlation 

S1-03: Special signals – characteristics and 

applications 

1 Introduction to Signals and Systems 

B.2 Sinusoids 

2.4 System response to external input: zero-state response 
S1-04: Systems: Linear and non-linear 1 Introduction to Signals and Systems 

S1-05: Unraveling convolution 9.4-1 Graphical procedure for the convolution sum  

S1-06: Integration, convolution, correlation & 

matched filters 

2.4-1 The convolution integral 

3.2 Signal comparison: Correlation 

S1-07: Exploring complex numbers and 

exponentials 

B.1 Complex numbers 

B.3-1 Monotonic exponentials 

B.3-2 The exponentially varying sinusoid 

S1-08: Build a  Fourier series analyzer 3.4 Trigonometric fourier series 

S1-09: Spectrum analysis of various signal types 4 Continuous-time signal analysis: The fourier transform 

S1-10: Time domain analysis of an RC circuit 1.8 System model: Input-output description 

S1-11: Poles and zeros in the Laplace domain 6 Continuous-time system analysis using the Laplace 

transform 

S1-12: Sampling and Aliasing 5 Sampling 

8.3 Sampling continuous-time sinusoid and aliasing 

S1-13: Getting started with analog-digital 

conversion 

5.1-3 Applications of the sampling theorem (Pulse code 

modulation PCM) 

S1-14: Discrete-time filters with FIR systems 11 Discrete-time system analysis using the z-transform 

12.1 Frequency response of discrete-time systems 

12.2 Frequency response from pole-zero location 
S1-15: Poles and zeros in the z plane with IIR 

systems 

12 Frequency response and digital filters 

S1-16: Discrete-time filters – issues in practical 

applications 

Not covered 

 



 



Oppenheim.A.V.,Wilsky.A.S., “Signals & Systems”, Prentice Hall, 2nd edition 

 

SIGEx Lab Manual Oppenheim, text book correlation 

S1-03: Special signals – characteristics and 

applications 

1 Signals and Systems 

 

S1-04: Systems: Linear and non-linear 1 Signals and Systems 

2 Linear time-invariant systems 

S1-05: Unraveling convolution 2.1 Discrete-time LTI systems: The convolution sum  

S1-06: Integration, convolution, correlation & 

matched filters 

2.2 Continuous-time LTI systems: The convolution integral 

2 Linear time-invariant systems; Problem 2.67 

S1-07: Exploring complex numbers and 

exponentials 

1 Signal and systems: Mathematical review 

1.3 Exponentials and sinusoidal signals 

S1-08: Build a  Fourier series analyzer 3.3 Fourier series representation of continuous-time 

periodic signals 

S1-09: Spectrum analysis of various signal types 4.1.3 Examples of Continuous-Time Fourier transforms 

S1-10: Time domain analysis of an RC circuit 3.10.1 A simple RC lowpass filter 

3.10.2 A simple RC highpass filter 

S1-11: Poles and zeros in the Laplace domain 9 The Laplace transform 

9.4 Geometric evaluation of the Fourier transform from the 

pole-zero plot 
S1-12: Sampling and Aliasing 7 Sampling 

S1-13: Getting started with analog-digital 

conversion 

8.6.3 Digital Pulse-Amplitude (PAM) and Pulse-Code 

modulation (PCM)  

S1-14: Discrete-time filters with FIR systems 6.6 First-order and second-order discrete time systems 
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Appendix B: Quickstart guide to using SIGEx 

 

Using “Experiment 15–Poles and zeros in the z-plane” as a basis for 

a demonstration of SIGEx 

Achievements in this experiment 
 

Students learn better when they can see the theory in action with real systems. You will be able to 

visualize the effect of pole zero placement on the system response for the time and frequency 

domain. You can confirm the theory and compare with real system performance. You can vary 

parameters in real time and confirm your understanding. You will be able to develop knowledge to 

intuitively design transfer function responses.  

 

Firstly browse through the sample manual to see the breadth and depth of possible hands-on 

laboratory work possible with the NI ELVIS/SIGEx bundle. 

 

Equipment 

 

�  PC with LabVIEW 2009 (or higher) & “Digital Filter Design” toolkit installed 

�  NI ELVIS 2 or 2+ and USB cable to suit 

�  EMONA SIGEx Signal & Systems add-on board 

�  Assorted patch leads 

�  Two BNC – 2mm leads 

 

Follow setup Procedure as listed on page 11 of Experiment 15 to run the SIGEx board. Reproduced 

here: 



 

Procedure 

Part A – Setting up the NI ELVIS/SIGEx bundle 

 

1. Turn off the NI ELVIS unit and its Prototyping Board switch. 

2. Plug the SIGEx  board into the NI ELVIS unit. 

Note: This may already have been done for you. 

3. Connect the NI ELVIS to the PC using the USB cable. 

4. Turn on the PC (if not on already) and wait for it to fully boot up (so that it’s ready to 

connect to external USB devices). 

5. Turn on the NI ELVIS unit but not the Prototyping Board switch yet. You should observe 

the USB light turn on (top right corner of ELVIS unit).The PC may make a sound to indicate that 

the ELVIS unit has been detected if the speakers are activated. 

6. Turn on the NI ELVIS Prototyping Board switch to power the SIGEx board. Check that all 

three power LEDs are on. 

7. Launch the SIGEx Main VI. 

8. When you’re asked to select a device number, enter the number that corresponds with the 

NI ELVIS that you’re using. You’re now ready to work with the NI ELVIS/SIGEx bundle. 

9. Select the EXPT 15 tab on the SIGEx SFP. 

Note: To stop the SIGEx VI when you’ve finished the experiment, it’s preferable to use the STOP 

button on the SIGEx SFP itself rather than the LabVIEW window STOP button at the top of the 

window. This will allow the program to conduct an orderly shutdown and close the various DAQmx 

channels it has opened. 

Part B – Setting up the experiment 

 

Run “NI ELVISmx Instrument Launcher” and select the FGEN “ Function Generator”. Run it and 

minimise the FGEN panel for now. 

Viewing SIGEx SFP, select Lab 15, which relates to laboratory Experiment 15.  

Patch together the experiment from “Part 2-IIR with feedforward : second order filters”  on page 

16 using Figure 1 . You will be building a 2nd order IIR filter and reviewing its response by sweeping 

it with a single frequency sinusoid from the FGEN across its range. 



 

 

Figure 1: IIR filter with sinusoidal input 

Settings are as listed in step 19. Reproduced here: 

ADDER GAINS: b0=1; b1=2; b2=1; a0=1; a1=+1.6; a2= -0.902 

PULSE GENERATOR: 20kHz, DUTY CYCLE=0.5 (50%) 

FUNCTION GENERATOR: Sinewave selected, FREQUENCY=1k; Amplitude= 1V pp 

SCOPE: Timebase = 4ms, Trigger level = 0V, Trigger on input signal 

Note that you are entering into the SIGEx SFP the coefficient values for the transfer function  

which are immediately setup in the hardware experiment structure you have patched up. 

Connect CH0 scope lead to the S/H analog input terminal, and CH1 scope lead to the output of the B 

TRIPLE ADDER, which is the output of the IIR filter. (Remember to also connect the scope’s black 

leads to GND terminals.) 

Select “Y AUTOSCALE” OFF using the convenient toggle switch above the tabs. At times you may 

need to turn the  Y autoscale ON again to adjust to current signals levels. 

Sweep the FGEN frequency from about 500Hz to 7kHz and observe the LPF effect you have 

implemented. Note that just before the rolloff that the high q of the filter causes the output to 

saturate. This is entirely due to the coefficient values selected and is discussed in the experiment 

preparation. 

To see the poles and zeros of the transfer function you have implemented, switch to TAB “PZ 

PLOT”. This TAB will display the poles and zeros for the coefficients currently setup on the SIGEx 



SFP. You can see that the poles are very close to the unit circle (r=0.95), hence the high gain at the 

peak before rolloff.  

 

 

 

Figure 1: IIR filter with broad spectrum noise input 

Viewing the system response using FFT 

To view the response more dynamically, you will now change your input signal. Change the patching of 

the FUNCTION GENERATOR to match Figure 2. You will now be inputting a flat noise spectrum and 

viewing the FFT of the filtered output of the system. 

 

Figure 2: IIR filter with flat broadband noise input 



Ensure  that SEQUENCE GENERATOR DIP switches are set to positions DOWN:DOWN. Set TLPF 

knobs to fully clockwise for now. Switch to TAB “ZOOM FFT” to view time and frequency domains 

simultaneously. 

Change scope timebase to 100ms. 

Setting up the input noise signal: 

i) Reduce the TLPF GAIN by rotating counter clockwise until the output Ch1 signal (red) is no longer 

saturated ie: less than 12V peak. A maximum level of 6 V is optimum to avoid saturation of internal 

ADDER nodes. 

ii) Reduce the noise bandwidth to around 4khz by rotating the TLPF block’s “Fc” control-counter 

clockwise. View the noise spectrum as the white trace on the SCOPE & FFT windows. 

The SFP should be similar to Figure 3 below: 

 

Figure 3: IIR filter response using FFT; note the very small input signal (white) 

At this point we can see and explore the issues relating to : 

-controlling our input signal level and bandwidth 

-viewing the response in both time and frequency domains 



-setting up a transfer function with appropriate internal gains 

We can also confirm that the peak of the response is correct according to the position of the poles. 

ie: PZ PLOT tells us that poles are at 32 degrees, hence we expect a peak close to 32/360*20,000 

= 1777 Hz. You can use the cursors in ZOOM FFT window to confirm this. 

Dynamically varying the poles and zeros to adjust response using GAIN ADJUST manual control 

Use the SIGEx board’s GAIN ADJUST knob to vary one of the coefficients by hand while viewing 

the frequency response. Leave the default settings. Turn the knob until it reads +1.6 (located in the 

COEFFICIENT SELECTOR window), then select radio button “ a1 ”. View the frequency response 

while slowly varying the value of a1. You will find that the peak frequency changes. 

 Find a range of a1 settings that work well and then view PZ PLOT while varying across that range. 

You will see the poles moving and reflecting the changing a1 coefficient. (Theory states that a1=-2σ, 

which is the real part of the pole and its conjugate.) You can confirm this relationship from values 

displayed on PZ PLOT. 

Set a1 back to +1.6, select OFF, then set GAIN ADJUST to -0.9, and select a2 radio button. 

Varying a2 will vary the gain or peak level of the filter. Notice what happens in the time domain 

when a2 = -1.0. The filter breaks into oscillation. View the poles again using PZ PLOT while varying a2. 

(Theory states that a2 = r
2). 

 Set a2 back to -0.9, then select OFF again at the COEFFICIENT SELECTOR to disable the GAIN 

ADJUST control. 

Using Digital Filter Design toolkit to implement Highpass filters 

Switch to the DFD TAB. This will automatically load the computed coefficients for the selected 

filter onto the SIGEx board. You can see the values on the TAB setup in the GAIN input controls on 

the SIGEx SFP.  

Connect CH0 to “ x0 ”, and CH1 to “Y” and view the internal signal levels at “x0” by switching to the 

ZOOM FFT tab. Set the TLPF GAIN higher but avoid saturating.These filters have lower internal 

gains than the previous ones. Vary the filter design type (at the DFD tab by clicking on “DESIGN 

METHOD” to select) and view the output responses using ZOOM FFT. 

Set timebase to 100ms. 

Again you can use the cursors to compare the actual performance to theory and design. 

You can expect to see a display like so: 

 



 

Figure 4: Highpass filter response using FFT; x0 (white); Y (red) 



 

Figure 5: DFD tab used to design filters and setup coefficients to the patched SIGEx board 

Default values are chosen to enable students to see textbook like responses which they can easily 

measure. 

Conclusion 

This quickstart guide is designed to demonstrate quickly, and without supporting preparation, some 

of the powerful interactivity of the SIGEx board. Students can expect to gradually build up to this 

level of complexity with the many documented earlier experiments from the SIGEx Lab Manual. 

By building and controlling experiments using real circuits, students will develop confidence and 

intuitive familiarity with the theory they have covered in class. 
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