
ni.com/automatedtest

CONTENTS

Introduction

Background

Features of a Test Executive

Conclusion

Next Steps

Fundamentals of Building a Test System

Test Executive Software

http://ni.com/automatedtest
http://www.ni.com

ni.com/automatedtest

Test Executive Software2

Introduction
Most test systems are designed fundamentally around two concepts: efficiency and cost.
Whether working in the consumer electronics industry or in semiconductor production, test
engineers are concerned about individual test time and total throughput of a test system, and
how these affect resources. When applications grow large enough to constitute multiple tests,
a variety of instruments, and several units under test (UUTs), they inevitably require the oversight
of test executive software to continue to address their cost and efficiency concerns.

Test executives are typically implemented as in-house solutions, or purchased as a commercial
off-the-shelf (COTS) products. In the prototypical build versus buy argument, a test architect must
determine whether it makes more sense to write a custom test executive or to invest and
integrate an existing solution. Before deciding whether to build or buy a test executive, it is
necessary to understand the purpose and core functionalities of this kind of software. This
guide summarizes key functions of a test executive and explores practical scenarios to apply
this knowledge.

Background
A test executive can automate and streamline large test systems. Sitting at the top of the
software stack, it consolidates common functions, such as test execution, result collection,
and report generation, up from the individual test level. The features of this solution are not
unique to a particular UUT, so a variety of applications can use the test executive as a framework.
This means that developers writing test code in G in LabVIEW software, C, .NET or other
languages can focus on the intricacies of testing a particular device, while common functions
across all UUTs are maintained at the top-level test executive. Overall, the test executive
defines such common functions in a manner that proves efficient from a development, cost,
and maintenance perspective.

Figure 1. Test executives allow the separation of individual test development from the architectural needs of the entire test system by
accomplishing tasks common across all tests at a higher level of abstraction.

test Executive

Test Development
Software

Test Development
Software

Test Development
Software

Operating System, Drivers, Hardware Abstraction

Instrumentation

Fixturing/Mass Interconnect

http://ni.com/automatedtest

ni.com/automatedtest

Test Executive Software3

Features of a Test Executive
Depending on the size of a company, the scale of a particular tester, and the variety of devices
under test, complexity of a test executive can range from simple to advanced. This guide
outlines common features that this software might contain. Some features are crucial to all
implementations of a test executive, while others represent additional functionality that
may not be strictly necessary. Each feature outlines an estimated amount of development
time to complete. These estimates are based on experience with hundreds of automated
test customers, as cited in Test Executive Software—Build or Buy? A Financial
Comparison Using NI TestStand.

Test Sequence Development Environment
A test executive provides a development environment in which to architect test sequences.
This feature is both fundamental— providing the development interface for the whole execution—
as well as complex. Sequence architecture encompasses the ability to implement branching or
looping logic, a means to import test limits, and the specification and organization of individual
test code. Interfacing with test code requires flexibility across a variety of built formats, such
as DLLs, VIs, and scripts, as well as integration across different development environments.
Test executives may also use test code that originates from a source code control provider.

Implementing a test sequence development environment in a custom-built test executive
can take around 100 person-days to complete, whereas a commercial solution provides this
environment outright. This feature requires the most development time for an in-house solution
because of the range of functions that a development environment provides. However, it is
fundamental to the sequence architecture experience and cannot be omitted.

Figure 2. A productive sequence development environment gives test engineers the ability to develop and debug complex
sequences that call into existing test code.

TEST SEQUENCE

Step 1

Step 2

Step 3

Step 4

C

LabVIEW

LabVIEW

.NET

Condition 1

Condition 2

http://ni.com/automatedtest
http://www.ni.com/white-paper/3829/en/
http://www.ni.com/white-paper/3829/en/

ni.com/automatedtest

Test Executive Software4

Custom Operator Interface
The operator interface is the display through which the operator interacts with the test system.
It typically allows for the selection of key input parameters, such as UUT identifier, test sequence
to execute, or report path. It also contains a Run or Start button to control execution. Many
large test systems today require a professional GUI differentiated by application or company
and written in the programming language of developer choice. In addition to customization,
this highly functional interface includes the ability to load, display, and run test sequences
complete with interactive user prompts, execution progress indicators, visualization of test
data, and localization.

Implementing a custom operator interface can take a range of eight to 32 person-days’ worth
of development time. A COTS solution can reduce this estimate because of existing libraries
and UI controls. Developing a custom operator interface can be a nontrivial time investment,
regardless of whether the test executive solution is built or bought. Test engineers who do
not feel this component is crucial to their system may instruct operators to work through the
development environment instead.

Sequence Execution Engine
A core provision of the test executive is a sequencing engine. The sequence execution engine
is responsible for all the actions required to evaluate a UUT. This includes calling individual
test code, creating a flow for execution between tests, and managing data between tests.
The sequencing engine is what executes a given test sequence, whether in the development
environment, through a custom operator interface, or on a deployed tester.

Implementing a sequence execution engine requires a minimum of 15 person-days to develop
in-house. However, it is a must-have feature of all test executives.

Figure 3. A customer operator interface uniquely identifies the UUT, company, application, test, and role of the operator for a given
test sequence.

UUT Tester Operator Interface

Test: UUT Power

Serial Number:

Open Sequence

X8J14BN

C:\Users\Admin

TEST EXIT

X

http://ni.com/automatedtest

ni.com/automatedtest

Test Executive Software5

Results Reporting
Given the abstracted role of the test executive, this piece of software is responsible for consolidating
individual test data, storing temporarily into memory, and publishing comprehensive test results.
Reports can come in a variety of formats, including XML, text, HTML, and ATML. Data may also
be pushed to a database following execution. The test executive makes this variety in formats
possible through extensible reporting options. Results reporting is a necessary component of
many test systems.

Developing result collection and a report generator from scratch can take around 15 person-days,
depending on the specific report required. Given a built-in report generator in a COTS solution,
results reporting can be customized to meet the needs of an application in a person-day or less.

User Management
It may be necessary to separate roles and responsibilities at the test executive level. User
management tools effectively compartmentalize the responsibilities between the overarching
test architect, the individual test developer who writes and debugs test code, and the operator
or production manager who runs the test. Functions available to a given user may even be
password protected to prevent misuse of the test sequence.

Implementing a user management system in a custom test executive takes about five person-
days’ worth of development time. Although not necessary for the use of a test executive, user
management tools do not require a significant amount of developer effort to implement and
can simplify the enforcement of test executive responsibilities.

Table 1. Similar to Windows file permissions, a user manager separates the roles and responsibilities associated with a test executive.

Figure 4. Part of a test executive’s role in a test system is to consolidate results across an execution and publish to a report or
database.

Custom
OI

Test 1

Test 2

Test 3

Development
Environment

Test
Sequence

Memoryor

Serial
Number

Execute

Execute

Execute

Result 1

Result 2

Result 3

Database

Report

Results Contents
- Serial Number

- Result 1
- Result 2
- Result 3

Privilege Architect Developer Operator

Edit √ — —
Save √ — —

Deploy √ √ —
Loop √ √ —
Run √ √ √

Exit √ √ √

User Level

Mark Operator

Larry Operator

Julie Developer

Scott Developer

Lauren Architect

http://ni.com/automatedtest

ni.com/automatedtest

Test Executive Software6

Parallel Testing Capabilities
Parallel test involves testing multiple devices at the same time, while still maintaining proper
code-module performance, result collection, and UUT tracking. Parallel test approaches range
from pipelined execution, where test order is maintained, but the test executive can test across
multiple sockets concurrently, all the way to dynamically optimized, batch, or other complex
execution styles.

Implementing parallel test is typically the most time-intensive for a test executive developer,
and can take 100 person-days to develop from scratch. Although parallel test may require a
large amount of time to develop, the ability to scale up an execution to mitigate throughput
needs in a large test system is often crucial. Many organizations do not consider parallel test
when first implementing a test executive, and learn later that it is a function they ultimately
need and cannot settle on.

Unit/Device Tracking and Serial Number Scanning
When testing across multiple UUTs, it can be necessary to uniquely identify and track each
device tested. This information can be stored alongside test results for specific analysis at the
unit or batch level, or to pinpoint the source of error when things go wrong. Device tracking
can range from manual entry by an operator on a keyboard, to a fully automated scanner that
loads UUT information after reading a barcode.

Developing this type of functionality can take five person-days from the ground up, or about
one person-day to customize when provided by a COTS solution. UUT tracking is not required
for every test system. However, it is useful where high-volume, high-throughput testing is
needed, such as the semiconductor or consumer electronics industries.

Figure 5. Parallel test capabilities allow for dramatic increases in system throughput without a re-architecture of the test executive.

1 2 3 4

Pipelined

Sequential
1 2 3 4

1 2 3 4

1 2 3 4

1 2

1

3

2

4

3

1 2

1

4

3

2

4

3 4

UUT 1

UUT 2

UUT 3

UUT 4

UUT 1

UUT 2

UUT 3

UUT 4

Auto Schedule

1

2

2

3

3

4

4

1

3

4

4

1

1

2

2

3

UUT 1

UUT 2

UUT 3

UUT 4

1. TOUCH SENSOR 2. WLAN 3.AUDIO 4. DIGITAL

http://ni.com/automatedtest

ni.com/automatedtest

Test Executive Software7

Test Deployment Tool
Most large test systems are not architected in isolation; they represent solutions for multiple
test sites or for an entire production floor. A test executive plays a key role in system deployment
by providing a mechanism or utility to package the entire software stack into a built, distributable
unit. A test system can be distributed in a variety of ways—an architect may be looking to deploy
an image of the test system or a fully functional installer containing all necessary dependencies
and run times. More information on this topic is covered in the white paper from the Fundamentals
of Building a Test System series, Software Deployment.

Deployment is a nontrivial task, and it can take a team of developers as many as 20 person-
days to implement from scratch. With an out-of-the-box deployment utility from a commercial
test executive, it still may take three person-days’ worth of time to successfully deploy. Given
the applicability of this feature to multiple test sites, it is often necessary to have in a test
executive solution.

Maintenance
Just as with any other component in a large test system, test executives must be properly
supported to ensure their performance over time. This encompasses expanding to include
new tests, maintaining compatibility across software or OS upgrades, and fixing any bugs
that are detected. Maintenance of a test executive solution even extends to the realm of
documentation. This is a crucial resource that operators, developers, and architects rely on
when working with a test executive.

Although it is difficult to predict the needs of a given tester, 15 percent of the initial time spent
to develop a custom test executive is spent annually in maintenance. Total development time
includes the estimated 20 days required to produce adequate documentation. The granularity
of support for a test executive can vary, which changes these cost estimates dramatically.
However, it is inadvisable to implement any test executive solution with the minimum in
maintenance efforts.

Figure 6. Deployment involves packaging all necessary components of a test system through a deployment tool or build server,
before distributing to the wanted test stations.

CONFIG EXE LOG

READ
ME

WEB
SERVICE

DAQ SERIAL DMM DLL

http://ni.com/automatedtest

ni.com/automatedtest

Test Executive Software8

Practical Scenario 1
Jonathan is a test engineer in the design lab at a small company that provides low-cost
consumer electronics. A remote controls each device, and Jonathan specializes in writing test
code to validate the transmitter-receiver communication between the remote and the prototype,
before the device is sent to production. With his company’s recent expansion, Jonathan has
less time per device to perform the requisite testing. He needs to automate the execution of
his existing validation code, so that he can spend more time writing code for new devices.
Therefore, he decides to employ a test executive to sequence through his test code.

The table below shows the needs that Jonathan identifies in a test executive.

Jonathan decides to build a test executive in-house. He does not have complex sequencing or
reporting needs, and does not have plans to deploy this system to other users or test stations.
If he purchased a commercial solution, he would not see the return on investment as the majority
of features would not be used. Instead, relying solely on his software knowledge and previously
purchased application software, he can develop a sequencer to meet his needs in as little as
10 person-days.

Jonathan builds his test executive in LabVIEW software. He architects a solution with a simple
interface that gives operators the ability to call a predetermined set of test steps and select
the path of the TDMS log. Jonathan can occasionally make small changes to the sequencer as
he introduces additional tests for a new prototype. Overall, the design lab sees an increase in
productivity thanks to the implementation of this sequencer.

Table 2. Jonathan’s needs in a test executive solution center on simple automation of existing validation code.

Feature Implementation

Test Sequence
Development Environment

Jonathan needs a development environment in which to architect his sequences. The test code
he has been working with is already fairly modular, so he should only have to call and loop over
test code within this environment.

Custom Operator Interface

Jonathan wants to be able to execute a set of test code with minimal interaction. He wants to
have to specify only a few relevant parameters to identify the device, wanted tests, and report
path. However, given that he is the end-use operator, it is not crucial to have an interface
separate from the development environment.

Sequence Execution Engine
This is the core need for Jonathan’s test executive solution. Each test consists of several
individual LabVIEW VIs that must be executed sequentially.

Results Reporting

The existing test code currently prompts the user to generate a new Technical Data Management
Streaming (TDMS) file for a given prototype. Each subsequent VI deposits minimal test results
into this same file. The test executive needs only to automate the creation of this TDMS file, and
then execute the remainder of the test code to generate results according to convention.

User Management
User management is not a priority, because Jonathan plans to architect, develop, and operate
this test executive.

Parallel Testing Capabilities Jonathan executes his tests on only one prototype at a time, so UUT volume is not a concern.

Unit/Device Tracking and
Serial Number Scanning

Given that testing is done on design prototypes, there are no assigned serial numbers to track.
Instead, Jonathan tracks each UUT by a unique name that the operator enters at run time.

Test Deployment Tool
Jonathan does not intend to deploy this code to additional testers. His test bench is unique
to the design lab, and separate from the manufacturing facilities.

Maintenance
This project belongs exclusively to Jonathan. He will implement and maintain whatever test
executive is selected. He does not plan to document his work, as he will be the sole person
to work on and use this test executive.

http://ni.com/automatedtest

ni.com/automatedtest

Test Executive Software9

In this particular case, a custom-built test executive proved to be the best option for Jonathan and
his criteria. Often, an in-house solution is the first step taken when scaling up to sequencing
or full automation, and may be more appropriate overall for a test bench application when
compared to the needs of a production setting.

What If…
■■ After a few months, a new test engineer is hired into the design labs and begins to assist

with the testing process. How will this engineer learn how to operate the sequencing tool,
or effectively troubleshoot any errors or bugs that appear?

■■ Jonathan transfers to another department, or leaves the company. How is the knowledge
required to update or fix the sequencer maintained?

■■ It becomes necessary for the sequencer to perform a functional evaluation of an entire
prototype. How would it incorporate additional test code that different engineers write in
other languages, with different programming paradigms and reporting techniques?

■■ The test executive is ported to a production setting to ensure consistency in testing. Can these
solutions scale up to such needs?

Practical Scenario 2
Dave’s company is designing a new functional tester to be implemented at the end of a
manufacturing line. Currently, UUT testing is performed by manually executing across a series
of existing, disaggregate pieces of code. This process significantly limits throughput of the
line, and Dave wants to employ a test executive in automating this process. The company
does not standardize on a test executive, and each group typically chooses its own from
within a small pool of commercial solutions and innumerable custom-built solutions.

The table below shows the set of requirements that Dave outlines for the tester.

Table 3. Dave’s evaluation of test executive software is driven by underlying throughput requirements on functional testers.

Feature Implementation

Test Sequence
Development Environment

A productive development environment that supports key features of a test executive is a must.
The environment must enable the sequencing of LabVIEW, .NET, and Python code.

Custom Operator Interface
Dave ultimately wants an operator interface that is customized to the company. He also wants
to remove most functionality beyond a Run button.

Sequence Execution Engine This is an obvious need for this system to address throughput needs.

Results Reporting
Currently, each test individually logs data to an SQL database. There is a need for consolidated
result collection by the test executive, with aggregate results communicated to the database
and identified by a serial number.

User Management
The majority of interaction with a tester occurs at the production level by the operator.
Dave prefers a user management tool or customizable interface that removes development
privileges from the operator’s view.

Parallel Testing Capabilities
As long as tester throughput matches production throughput, Dave does not need to test multiple
UUTs at once.

Unit/Device Tracking and
Serial Number Scanning

A serial number identifies each component and assembled UUT. A barcode scanner is used to
track such information. The test executive must be able to propagate such information across
the different tests it executes.

Test Deployment Tool Dave needs to deploy the final product to 10 additional testers.

Maintenance
The test engineering department will maintain the test executive, either in full capacity for an
in-house solution or where needed for a COTS option.

http://ni.com/automatedtest

ni.com/automatedtest

Test Executive Software10

To make his decision, Dave also weighs the financial considerations of the tester. He estimates
that a new tester will consist of a large, high-performance PXI chassis and embedded controller
pair. Because of the nature of tests required to evaluate the UUT, the chassis will contain several
modules that range from DAQ cards and PXI instruments, such as digitizers and arbitrary
waveform generators, to RF test equipment. The cost of each tester will sit at around $100,000
USD regardless of the test executive solution.

When evaluating the software stack, Dave notes that purchasing a COTS solution adds to the
project cost. A development license of the test executive costs a few thousand dollars, with
the added cost of $500 USD per additional tester for a license to deploy.

Dave believes he can save on test executive cost by building a custom solution in Python.
The language is open source and the development environment is free—both are benefits he
believes will more than offset the additional development time required to build a test
executive in-house.

The test engineering team is proficient in Python, which delivers core functionality—a
sequential sequencing engine, database connectivity, and code reuse of their existing
tests—in the required timeframe. The test executive is successfully deployed to the
manufacturing lines. The test engineers are occasionally called in to fix bugs in one or more
of the testers.

What if…
■■ Production demands on the manufacturing lines increase, such that the existing test

executive cannot meet throughput needs. It is necessary to scale up to parallel test.
■■ How much additional development time would it require to attempt to implement

this functionality? How does this affect the cost comparison of a custom versus
COTS solution?

■■ Assume throughput needs of the tester cannot be met because of known
multiprocessing limitations in the Python language. Dave’s team is faced with
purchasing additional hardware to reuse the current solution, or pursuing another
test executive altogether. How does this further affect the cost comparison of a
custom versus COTS solution?

■■ The test engineering team cannot always service or upgrade the test executive because
of other priorities.

■■ How is production affected when such needs arise and the team cannot help? How
does this downtime factor into system maintenance costs?

■■ How is the time that the test engineering team spends maintaining the tester
quantified? How does this factor into system maintenance costs?

Practical Scenario 3
Karen works at a company that designs and produces small medical devices. Each product
has its own fully automated production line. Although each group enlists a test executive for
top-level system management, the company has not standardized on a solution. Recently, a
new test manager has come aboard and expressed interest in test executive standardization.
Karen is tasked with the responsibility of selecting the commercial solution, existing in-house
product, or new development effort to act as the de facto test executive.

http://ni.com/automatedtest

ni.com/automatedtest

Test Executive Software11

Karen compiles the following list of requirements across the assorted groups responsible for
each product.

Given this criteria, Karen eliminates all of the existing in-house solutions. Most of them were
architected as part of a focused effort to get a single tester off the ground. There is little
consistency in architecture that would lend for extensibility into other production lines,
specifically in terms of sequencing needs, operator interface customizations, and effective
deployment practices. Additionally, it has already proven difficult to track down the test
engineer responsible for a given test executive when a problem occurs in the software, or
a modification is made to the device.

Instead, Karen proposes a commercial solution to her manager. The test executive is made by a
well-known vendor whose other hardware and software tools are already used in the testers.
Out-of-the-box features of this test management software can meet the range in sequencing
paradigms that testers require, and employ the specific reporting format needed. The test
executive includes a set of tools designed to meet some of the other testers needs, including a
user management tool and deployment utility. Given that a commercial vendor maintains it,
Karen’s manager should not have to worry about incompatibility across OS migrations later.

Table 4. Karen’s interest in a test executive solution stems from standardization needs across a variety of testers.

Feature Implementation

Test Sequence
Development Environment

The test developers require a flexible development environment that, specifically, can
interface with their LabVIEW and VB.NET code. Tortoise SVN is used for source code control,
and integration with this tool is required.

Custom Operator Interface
The test manager wants to customize operator interfaces according to the product being built
or tested. Operators have reported they want a progress indicator to update test status when
overseeing a tester.

Sequence Execution Engine A definite requirement for all testers.

Results Reporting All production systems must conform to a company-wide, HTML reporting standard.

User Management
The test engineering team consists of a few system architects and a larger number of test
developers. The test manager wants to separate responsibilities between these two roles.

Parallel Testing Capabilities
When performing functional testing on an assembled unit, production lines evaluate one UUT
at a time. However, board-level testing should be optimized to execute as quickly as possible.
To meet the needs of all testers, parallel test is needed.

Unit/Device Tracking and
Serial Number Scanning

UUT information is tracked by operator input for each product and board in the company.

Test Deployment Tool
The company has a dedicated team of test engineers that writes test code. This team must be
able to deploy from the development environment in their lab to the wanted production setting.
Currently, this is accomplished manually.

Maintenance
The test manager requires a formal maintenance plan as part of the standardization effort. Part of
this plan needs to accommodate an OS migration that the company is facing later this year when
their current selection goes end-of-life.

http://ni.com/automatedtest

ni.com/automatedtest

Test Executive Software12

Karen’s company is ultimately successful with their decision. Overall, the test executive provides
a flexible framework that scales across the different production lines. Standardization across
a purchased test executive comes with additional benefits that the company can use. The
vendor provides training to facilitate the test engineer’s acclimation to the new software. Part
of their purchase of the test executive includes a maintenance contract, wherein the vendor
agrees to provide routine patches and upgrades. The company also has access to technical
support resources that can assist in troubleshooting their test sequences.

The commercial solution remains the standard at Karen’s company. When test engineers need
to be replaced, because of promotions, retirement, or natural attrition, the test manager can
hire an individual with experience in the test executive. The company successfully migrates
from an obsolete OS up two complete versions while maintaining their selection in test
executive. As new products are developed, the extensible architecture can continuously
meet production needs.

Conclusion
Regardless of company size, industry, or individual test criteria, it is necessary to implement a
test executive for top-level system management. This implies introducing a degree of abstraction
that separates common functions of a system from the specific functionality of test code. A
complete evaluation of test executive needs is necessary before architecting the ultimate solution.
Many test engineers grapple with the decision to build or buy their test executive. Selection
of one path over another involves careful consideration of each solution’s benefits from a cost,
functionality, and maintenance perspective.

Next Steps
TestStand is industry-standard test management software that helps test and validation
engineers build and deploy automated test systems faster. TestStand includes a ready-to-run
test sequence engine that supports multiple test code languages, flexible results reporting,
and parallel/multithreaded test.

Although TestStand includes many features out of the box, it is designed to be highly extensible.
As a result, tens of thousands of users worldwide have chosen TestStand to build and deploy
custom automated test systems. NI offers training and certification programs that nurture and
validate the skills of over 1,000 TestStand users annually.

Learn more about TestStand

©2016 National Instruments. All rights reserved. LabVIEW, National Instruments, NI, NI TestStand, and ni.com are trademarks of National Instruments. Other product and company names listed are trademarks or
trade names of their respective companies.

http://ni.com/automatedtest
http://www.ni.com/teststand/whatis/

