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1 Introduction 
802.11 Application Framework provides a ready-to-run, easily modifiable real-time 
physical layer (PHY), and lower and middle medium access control (MAC)-layer 
reference design based on the IEEE 802.11 wireless standard. The application 
framework is available with LabVIEW Communications System Design Suite (LabVIEW 
Communications). 

This application framework provides a substantial starting point for researchers looking 
for ways to improve the IEEE 802.11 standard by exploring brand-new algorithms and 
architectures that can support the tremendous increase of the number of terminals, 
inventing new waveforms by which to modulate and demodulate the signals, or finding 
new multi-antenna architectures that fully exploit the degrees of freedom in the 
wireless medium. 

The application framework is comprised of modular PHY and MAC blocks implemented 
using LabVIEW Communications. It is designed to run on the powerful Xilinx Kintex-7 
FPGA and an Intel x64 general-purpose processor, which are tightly integrated with the 
RF and analog front ends of the NI software defined radio (SDR) hardware. 

The application framework is designed from the ground up for easy modifiability, while 
adhering to the main specifications of the IEEE 802.11 standard. This design allows 
wireless researchers to quickly set up and run their real-time prototyping laboratory 
based on the IEEE 802.11 standard. They can then primarily focus on selected aspects 
of the protocol that they wish to improve, and easily modify the design and compare 
their innovations with the existing standards. 

2 Scope 
The application framework provides functional elements of the physical (PHY) layer as 
well as the medium access control (MAC) layer of a single station (STA). The 
implementation includes a transmitter (TX) and a receiver (RX). 

The following subsections describe which PHY and MAC functionalities from the IEEE 
802.11 standard [1] are supported by the application framework. 

2.1 System Features 
The PHY and MAC functionalities implemented in the application framework allow 
communication between multiple nodes. A station can send data to either a single 
station or to a group of stations. 
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The application framework provides an external message-based interface to transmit 
and receive packets and to configure the transmission parameters. It can be used to 
connect an external higher MAC implementation to the framework. The interface is 
called Middle MAC SAP and described in Chapter 5; SAP refers to Service Access Point. 
Alternatively, when no external MAC implementation is used, the host application also 
offers a sample data source and sink for simple data exchange.  

The implemented MAC functions include all functionalities essential for shared medium 
access using the distributed coordination function (DCF) according to Section 10.3 of 
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1]. DCF uses carrier sensing multiple access with collision avoidance 
(CSMA/CA). The basic access procedure includes channel sensing, which waits for the 
channel to be free followed by a random backoff time. This basic access procedure is 
supported with and without request-to-send (RTS)/clear-to-send (CTS) exchange, which 
is useful for protecting long packets. This exchange reserves the channel for the 
duration of the sequence. The receiver acknowledges a successful packet reception by 
replying with an acknowledgement (ACK) packet. The sender ensures a robust 
communication by sending retransmissions in case no ACK was received. More 
information about the implemented MAC features is given in Section 2.2. 
Implementation details are described in Chapter 6. 

The PHY implements the orthogonal frequency-division multiplexing (OFDM) PHY (also 
called 802.11a, Legacy or non-high throughput (non-HT)) described in Chapter 17 of Part 
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1] as well as the Very High Throughput (VHT) PHY (also called 802.11ac) 
described in Chapter 21 of Part 11: Wireless LAN Medium Access Control (MAC) and 
Physical Layer (PHY) Specifications [1]. Only single input, single output (SISO) and 
single-user transmission and reception are supported. The Legacy or non-HT subcarrier 
format supports a bandwidth of 20 MHz. The VHT subcarrier format supports 
bandwidths of 20 MHz, 40 MHz and 80 MHz. 

Besides PHY packet transmission and reception, the PHY features include power 
measurement, clear channel assessment (CCA) and automatic gain control (AGC). More 
information about the implemented PHY features is given in Section 2.3. 
Implementation details are described in Chapter 7. 

2.2 Medium Access Control Layer Overview 
The implemented MAC functions include all essential functionalities for a shared 
medium access using the DCF according to Section 10.3 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]. It involves 
functions for channel monitoring and determining opportunities when the channel may 
be accessed (TX opportunity), sending automatic responses (CTS and ACK), access 
procedure handling, MAC frame encoding at the transmitter, and MAC frame decoding 
at the receiver. 
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The following features are related to channel monitoring and TX opportunity detection 
which are described in Section 6.5.of DCF control block: 

• Carrier sensing (CS) as described in Section 10.3.2.1 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]. This 
includes physical CS where the channel state is detected based on signal 
detection and energy detection performed by the PHY, as well as virtual CS with 
the help of a network allocation vector (NAV). 

• NAV handling as described in Section 10.3.2.4 of Part 11: Wireless LAN Medium 
Access Control (MAC) and Physical Layer (PHY) Specifications [1]. The NAV is 
used to maintain a prediction of future traffic on the medium, based on duration 
information announced in RTC/CTS frames. 

• Interframe space handling (IFS) as described in Section 10.3.2.3 of Part 11: 
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1]. The following IFSs are supported: 

o Short interframe space (SIFS)—Used for transmission of ACK and CTS 
packets. 

o DCF interframe space (DIFS)—Used if a packet was successfully received.  
o Extended interframe space (EIFS)—Used if a packet was not successfully 

received, either because of an error on PHY level (PhyRxEnd indication 
indicates error) or because frame check sequence (FCS) check failed on 
MAC level. 

The following automatic responses are supported and implemented in the Frame 
Sequence TX control module (part of MAC TX) which is described in Section 6.3.5: 

• MAC-level acknowledgements as defined in Section 10.3.2.2 of Part 11: Wireless 
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]—
Sending an ACK packet as a response to a successfully received data or 
management packets.  

• RTS/CTS procedure as defined in Section 10.3.2.2 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]—
Sending a CTS packet as response to a successfully received RTS packet. 

The following features are related to access procedure handling: 

• Backoff handling as described in Section 10.3.4.3 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]. This 
includes choosing a random backoff value within the contention window. The 
contention window is increased and reset as required by the recovery procedure. 

• RTS/CTS procedure as described in Section 10.3.2.5 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]. 

• Recovery procedures as described in Section 10.3.4.4 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]. This 
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includes sending retransmissions in case of errors and maintaining several 
retransmission counters. The counters are compared to the retry limits 
dot11ShortRetryLimit and dot11LongRetry-Limit to determine when the recovery 
procedure needs to be aborted. Depending on the success of a transmission, 
requests for increasing or resetting the contention window are generated. 

• Duplicate detection and recovery procedure as described in Section 10.3.2.11 of 
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1]. Duplicates can occur if multiple retransmissions are 
successfully received. The duplicate detection filters the duplicates based on a 
sequence number. At the transmitter, only the baseline sequence number space 
(SNS1) is supported. At the receiver, only the “not QoS Data” cache (receiver 
cache identifier (RC1)) is supported. 

• Backoff handling is a module inside the DCF control, which is described in 
Section 6.5.2.1. The RTS/CTS procedure is handled inside the Frame Sequence 
TX control module as part of the MAC TX (described in Section 6.3.5). The 
recovery procedures are handled in the MPDU Retransmission Control module as 
part of MAC TX (described in Section 6.3.4). Duplicate detection is a module in 
the MAC RX (described in Section 6.4.5). The corresponding TX function, the 
sequence number assignment, is a module in the MAC TX (described in Section 
6.3.1). 

Overall, the following sequence types are supported: 

• RTS | CTS | DATA | ACK 
• DATA | ACK 
• DATA 

The following are MAC transmitter functions for packing the MAC service data unit 
(MSDU) and assembling the PHY service data unit (PSDU): 

• MAC protocol data unit (MPDU) generation to assemble the MAC frame 
composed of MAC header, frame body and FCS according to Section 9.2 of 
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer 
(PHY) Specifications [1]. The supported frame structures are described in 
Section 2.2.2. 

• Aggregated MPDU (A-MPDU) aggregation as defined in Section 9.7 of Part 
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1] with the limitation that only single-MPDU (one A-MPDU 
subframe) is supported. 

The corresponding modules are implemented as part of the MAC TX and described in 
Sections 6.3.6 and 6.3.7, respectively. 

The following corresponding functional elements are provided for the MAC receiver: 
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• A-MPDU De-Aggregation with the limitation that only single-MPDU (one A-
MPDU subframe) is supported. 

• MPDU disassembly and frame check sequence (FCS) check. 
• MPDU Filtering that evaluates the received MPDU configuration and decides 

if the packet was addressed to this station. 

The following features are not supported: 

• All features related to coordination functions other than DCF (that is, point 
coordination function (PCF), hybrid coordination function (HCF) and mesh 
coordination function (MCF)). 

• All transmitter and receiver functions that are optional or that require special 
capabilities (for example, quality of service (QoS)). 

• MSDU fragmentation as described in Section 10.2.7 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]. 

• A-MPDUs as defined in 9.7 of Part 11: Wireless LAN Medium Access Control 
(MAC) and Physical Layer (PHY) Specifications [1] which contain multiple A-
MPDU subframes. 

• Block acknowledgement as described in Section 10.24 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]. 

Most of the listed MAC functions (referred to as lower MAC) are implemented on the 
FPGA because they need to react within the tight timing requirements mandated by the 
DCF. Only some MAC functions (referred to as middle MAC) are implemented on the 
host. The architecture is explained in Chapter 3. Implementation details are given in 
Chapter 6. 

Higher MAC functionality is not implemented. Instead, an interface called MAC Middle 
Service Access Point (SAP) is provided which can be used to connect an external higher 
MAC implementation. The interface is described in Chapter 5. 

2.2.1 MAC Frame Formats 
The application framework follows the frame structure for the MPDU as defined in 
Section 9.2 of Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer 
(PHY) Specifications [1]. A MAC frame consists of the MAC header, the frame body and 
the FCS field. The existence of the MAC header fields depends on the MPDU 
configuration, for example, on frame type and subtype.  

The frame structures for data and management frames are shown in Figure 2-1 and 
Figure 2-2. The frame structure for control frames with subtypes RTS, CTS and ACK are 
shown in Figure 2-3, Figure 2-4 and Figure 2-5 respectively. 
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Figure 2-1: Structure of a Data Frame As in Section 9.2.3 of Part 11: Wireless LAN Medium Access Control 
(MAC) and Physical Layer (PHY) Specifications [1] 

 
Figure 2-2: Management Frame As in Section 9.3.3.2 of Part 11: Wireless LAN Medium Access Control (MAC) 
and Physical Layer (PHY) Specifications [1] 

 
Figure 2-3: Control Frame: RTS Frame As in Section 9.3.1.2 of Part 11: Wireless LAN Medium Access Control 
(MAC) and Physical Layer (PHY) Specifications [1] 

 
Figure 2-4: Control frame: CTS Frame As in Section 9.3.1.3 of Part 11: Wireless LAN Medium Access Control 
(MAC) and Physical Layer (PHY) Specifications [1] 

 
Figure 2-5: Control Frame: ACK Frame As in Section 9.3.1.4 of Part 11: Wireless LAN Medium Access Control 
(MAC) and Physical Layer (PHY) Specifications [1] 
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Please note that Figure 2-1 and Figure 2-2 show the general frame structure. Not all of 
the fields are present in all cases. In the chosen implementation, the presence and the 
contents of the fields are defined as follows: 

• Frame control—This field contains a bit mask as defined in Figure 9-2 of Part 11: 
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1]. The following subfields are filled: type, subtype, retry. Frame 
types and subtypes which are supported by the application framework are shown 
in Table 2-1. 

• Address fields—The mapping of the address fields is shown in Table 2-2. In 
case no address is mapped to the address field, then the field is removed. 

• QoS control/HT control—In the MAC transmitter implementation, these fields 
are not present. In the MAC receiver, these fields are extracted and reported as 
part of the RX indication but the fields are not interpreted in any way. 

• Frame body—This field is only present in data and management frames. It 
contains the MPDU (in case of Legacy mode) or the A-MPDU (in case of VHT 
mode). 

• FCS—Consists of a 32-bit cyclic redundancy check (CRC) as defined in Section 
9.2.4.8 of Part 11: Wireless LAN Medium Access Control (MAC) and Physical 
Layer (PHY) Specifications [1]. 

Table 2-1: Frame Types Handled by the Application Framework 

Frame Type Frame Subtype Initiator/Receiver of the Frame 
Data Data Higher layers (Middle MAC SAP) 
Management Any Higher layers (Middle MAC SAP) 
Control RTS, CTS, ACK Automatically generated/evaluated inside 

lower MAC 

Table 2-2. Presence and Mapping of Address Fields 

Frame Type Address 1 Address 2 Address 3 Address 4 
Type == Control, to/from DS not relevant 
subtype==RTS recipient 

address 
(RA) 

transmitter 
address (TA) 

— — 

subtype==CTS recipient 
address 
(RA) 

— — — 

subtype==ACK recipient 
address 
(RA) 

— — — 

Type == Data, subtype not relevant 
to DS from 

DS 
   — 
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0 0 recipient 
address 
(RA) 

transmitter 
address (TA) 

basic 
service set 
identifier 
(BSSID) 

— 

0 1 recipient 
address 
(RA) 

transmitter 
address (TA) 

source 
address (SA) 

— 

1 0 recipient 
address 
(RA) 

transmitter 
address (TA) 

destination 
address 
(DA) 

— 

1 1 recipient 
address 
(RA) 

transmitter 
address (TA) 

destination 
address 
(DA) 

source 
address (SA) 

type == Management, from / to DS not relevant 
 recipient 

address 
(RA) 

transmitter 
address (TA) 

basic 
service set 
identifier 
(BSSID) 

— 

 

2.2.2 Aggregate MPDU 
Figure 2-6 shows the A-MPDU format and also indicates that the application framework 
supports A-MPDU with one single MPDU as defined in Section 9.7.1 of Part 11: 
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications 
[1]. 

 
Figure 2-6: Format of A-MPDU 

2.3 PHY Layer Overview 
2.3.1 PHY Supported Features 
The PHY in the application framework implements features of the OFDM PHY as 
defined in Chapter 17 of Part 11: Wireless LAN Medium Access Control (MAC) and 
Physical Layer (PHY) Specifications [1] (also called 802.11a, non-HT or Legacy) and the 
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VHT PHY (also called 802.11ac) defined in Chapter 21 of Part 11: Wireless LAN Medium 
Access Control (MAC) and Physical Layer (PHY) Specifications [1]. 

The following limitations exist: 

• Long guard interval only 
• SISO architecture, ready for multiple-input, multiple-output (MIMO) 
• Support of single user only for 802.11ac applications 

The application framework provides the following PHY transmitter functionalities: 

• Bit scrambling 
• Convolutional encoding and bit interleaving 
• Binary Phase-shift keying (BPSK)/quadrature amplitude modulation (QAM) 

constellation mapper up to 256-QAM 
• Pilot sequence generation 
• Signal fields generation 
• OFDM modulation 
• Guard interval (GI)1 insertion 
• Addition of training fields 

The PHY TX is real-time configurable, that is, the configuration can be changed from 
packet to packet. 

The following corresponding functionalities are provided for the receiver side: 

• CCA based on energy detection as well as on signal detection 
• Packet detection 
• AGC 
• Time and frequency synchronization 
• GI removal 
• OFDM symbol demodulation based on fast Fourier transform (FFT) 
• Channel estimation and zero-forcing equalization based on the legacy long 

training field (L-LTF) and very high throughput legacy training field (VHT-LTF) 
• Phase correction based on the pilot subcarriers 
• BPSK/QAM demodulation 
• Deinterleaving 
• Convolutional decoding based on Viterbi decoding 
• Descrambling 

                                            
1 Notice that the terms guard interval and cyclic prefix are used synonymously in this 
document. 
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Similar to the PHY TX, the receiver chain is real-time configurable. The receiver 
configuration (packet length, modulation and coding scheme (MCS), and so on) is 
chosen automatically based on the decoded signal fields (legacy signal field (L-SIG), VHT 
signal field A (VHT-SIG-A). 

The subcarrier format 802.11a supports the bandwidth of 20 MHz. The subcarrier 
format support 802.11ac supports bandwidths of 20, 40 MHz and 80 MHz. The 
following MCSs are supported: 

• 802.11a, 20 MHz—all defined MCS, up to MCS 7 (64-QAM, code rate 3/4) 
• 802.11ac, 20 MHz—all defined MCS, up to MCS 8 (256-QAM, code rate 3/4) 
• 802.11ac, 40 MHz—all defined MCS, up to MCS 9 (256-QAM, code rate 5/6) 
• 802.11ac, 80 MHz—reduced MCS range, up to MCS 4 (16-QAM, code rate 3/4) 

2.3.2 PHY Frame Formats 
Figure 2-7 and Figure 2-8 show PHY frame formats of 802.11a and 802.11ac subcarrier 
formats, respectively. The application framework follows the PHY frame format as 
specified in Section 18.3. Fields specifically needed for the 802.11ac format have the 
name extension prefix VHT, and fields specifically needed for the 802.11a format are 
referred to as Legacy (L).  

 
Figure 2-7: PHY Frame Format 802.11a 

 
Figure 2-8: PHY Frame Format 802.11ac 

Depending on the subcarrier format, the PHY frame consists of the following fields: 

• Legacy short training field (L-STF), a static field that is used for packet detection 
and AGC at the receiver. 

• L-LTF, a static field that is used for time and frequency synchronization as well as 
channel estimation. 

• L-SIG, a dynamic field that contains information about the applied MCS and the 
frame length. 

• VHT-SIG-A, a dynamic field that contains information about the applied channel 
bandwidth, MCS, and, if configured on MIMO, multi-user settings. 

• VHT short training field (VHT-STF), a static field to be used for improving AGC 
estimation when performing MIMO transmission. 
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• VHT-LTF, a static field to be used for MIMO channel estimation purposes.  
• VHT signal field B (VHT-SIG-B), a dynamic field containing information of the 

frame length and the MCS for single-user or multi-user modes. 
• Legacy data (L-DATA) or VHT data (VHT-DATA) is a dynamic field, which is 

uniquely defined by the MAC message. The number of OFDM symbols NSYM 
used for the data depends on the chosen MCS and the payload length. 

The number of OFDM symbols necessary for the demodulation of the physical layer 
convergence procedure (PLCP) protocol data unit (PPDU) data or for channel estimation 
during a null data packet (NDP) [1] in the VHT-LTF field per frame can be either 1, 2, 4, 
6, or 8. The number of OFDM symbols is determined by the total number of space-time 
streams across all users being transmitted in the VHT PPDU [1]. 

2.3.3 AGC 
The framework implements an automatic gain control. The RF input power is 
permanently measured, and the RX gain is chosen so that the RX chain has an optimal 
operation point during reception of a packet. Because the AGC in implemented on the 
FPGA, it allows per-packet AGC. More information about the AGC implementation is 
given in Section 7.2.1. 

2.3.4 CCA 
The framework implements CCA including energy detection and signal detection. The 
CCA indications are evaluated by the DCF module to decide when the channel may be 
accessed. 

Energy detection is performed according to Section 21.3.18.5 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1] with 
deviations listed below. The CCA energy detection module permanently measures the 
power on the filtered signals for the primary channel (20 MHz), the secondary channel 
(20 MHz) and the secondary40 channel (40 MHz). If the measured power exceeds a 
certain threshold, the channel is reported busy.  

The following are deviations to the standard regarding energy detection: 

• The following are conditions for CCA indication (busy, primary), Section 
21.3.18.5.3 of Part 11: Wireless LAN Medium Access Control (MAC) and Physical 
Layer (PHY) Specifications [1]: 

o Signal detection (detection of a PPDU) shall be triggered only if the 
primary channel power exceeds -82 dBm. This check is not implemented. 

o The threshold used in combination with the time slot aCCATime is defined 
as a fixed value of 20 dBm above the minimum modulation and coding 
rate sensitivity (-82 dBm + 20 dB = -62 dBm). In the implementation, the 
value is configurable from the host using the parameter CCA energy 
detection threshold. 
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• The following are conditions for CCA indication (busy, secondary or 
secondary40), Section 21.3.18.5.4 of Part 11: Wireless LAN Medium Access 
Control (MAC) and Physical Layer (PHY) Specifications [1]: 

o The threshold used in combination with the time slot aCCATime is defined 
as a fixed value of -62 dBm. In the implementation, the host parameter 
CCA energy detection threshold is used as well. 

o A second condition using the power threshold -72 dBm in combination 
with the time slot aCCAMidTime is defined. This condition is not 
implemented. 

• The following is a condition for CCA indication (busy, secondary80), Section 
21.3.18.5.4 of Part 11: Wireless LAN Medium Access Control (MAC) and Physical 
Layer (PHY) Specifications [1]: Monitoring of the secondary80 channel is 
described. This functionality is not implemented. 

More information about the CCA is given in Section 7.2.2. 

2.3.5 Channelization 
The supported channelization is illustrated in Figure 2-9. It shows where the selected 
subband is located in the baseband signal. 

The 256-point FFT of the PHY covers 80 MHz bandwidth. Based on the 20 MHz 
bandwidth of the non-HT signal, the 80 MHz bandwidth can be divided into four 
subbands of 20 MHz, which are the trapezoids in top plot of Figure 2-9. The numeric 
control primary channel selector determines which subband is used as the primary 
channel. During transmission only the selected subband is used by the PHY in case of 
20 MHz transmissions. The remaining subcarriers are filled with zeros. For wider 
bandwidths, the subbands get combined as shown in Figure 2-9. For example, if the 
primary channel selector is set to 3, it will be used in combination with the lower 20 
MHz subband 2 in case of a 40 MHz transmission. It shows 
PrimaryChannelUpperBehavior as described in Annex E of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]. For an 80 
MHz transmission, the full FFT range will be used independently of the selected 
subband. 

For the VHT PPDU format, the PHY RX must dynamically switch based on the channel 
bandwidth information in VHT-SIG-A. This switching is performed by selecting the 
correct range in the baseband frequency domain without changing the RF center 
frequency.  
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Figure 2-9: Channelization Used in the Application Framework 

The RF center frequency depends on the primary channel center frequency and the 
primary channel selector, which are set on the host. It is chosen so that the center of 
the 20 MHz primary channel is at the primary channel center frequency as shown in 
Figure 2-10. 

Valid frequencies when communicating with commercial equipment depend on the 
channel sets defined in Annex E of Part 11: Wireless LAN Medium Access Control 
(MAC) and Physical Layer (PHY) Specifications  [1]. Otherwise, the wrong set of 20 MHz 
subbands could be concatenated for higher bandwidth transmissions. 

 
Figure 2-10: Frequency Mapping/Channelization 

3 Architecture 
A high-level system overview is shown in Figure 3-1. It shows the separation between 
higher MAC, Middle MAC, lower MAC, PHY and DCF control. Furthermore, it shows 
the partitioning between host and FPGA. 
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Figure 3-1: High-Level System Overview 

3.1 Partitioning between Host and FPGA 
All PHY and MAC functions requiring fast reaction within the SIFS timings defined by 
the DCF are implemented on the FPGA. Examples are sending CTS after successful 
RTS reception, sending ACK after successful data reception, and sending a pending TX 
request as soon as the channel is idle and backoff counting finished. The affected MAC 
functions are summarized as lower MAC in Figure 3-1. All DCF-related functions are 
summarized as DCF control. This includes backoff counting, interframe spacing 
counting for SIFS, DIFS and EIFS, maintaining the NAV, and handling the medium state 
information. 

All MAC functions that are not time-critical, or that implement buffers (duplicate 
detection), are implemented on the host. This includes the middle MAC features and 
the interface to the higher MAC (Middle MAC SAP). The host also implements a stub 
for simple higher MAC functionality which read from a data source for packet 
generation and writes to a data sink for packet reception. The user interface also 
implements controls, indicators, graphs and plots for configuration and status display. 
More details on the host features are given in Chapter 4.  

3.2 Communication between Modules 
As shown in Figure 3-1, the high-level blocks are (lower and middle) MAC TX, PHY TX, 
(lower and middle) MAC RX, PHY RX and DCF control. They communicate with each 
other by sending requests and indications. A request is a command to perform a certain 
action like transmitting a packet. An indication is an information that an event happened 



LabVIEW Communications 802.11 Application Framework Manual | © National Instruments | 19 

like a packet was received. The modules react up reception of a request/indication by 
changing their inner state, eventually waiting for a request/indication from another 
module to arrive and ultimately by sending a request/indication by themselves. 

Requests and indications are also used for communication between modules within the 
high-level blocks. Typically, one module triggers the downstream module without 
expecting feedback. An example is the MAC RX block where a module sends an 
indication to the next module when it finished processing. In some cases, a module 
expects feedback from the downstream module. An example is the MAC TX block 
where the MPDU (Re-)Transmission Control module sends a request to the Frame 
Sequence TX Control and waits for an indication that the frame sequence was 
completed. 

The requests and indications are implemented as clusters. Each cluster contains the 
elements which correspond to the parameters of the message and additionally a valid 
flag. On the FPGA, the valid flag is set to True in the clock cycle when the message is 
ready for processing. 

Within the MAC TX and the MAC RX, the same cluster is used by multiple modules for 
collecting all information related to the current transmission or reception. The fields 
contain default values at first and they are filled by the submodules step by step. An 
example is the MSDU fragmentation which reads the MSDU length and sets the MPDU 
frame body length. 

More information about the MAC TX and MAC RX modules is given in Sections 6.3 and 
6.4. The DCF control is described in Section 6.5. More information about the PHY is 
presented in Chapter 7. 

3.3 Architecture Interfaces 
3.3.1 Interface between PHY and lower MAC: PHY SAP 
The PHY SAP provides the interface to the PHY which is used by the lower MAC. Both 
entities are implemented on the FPGA but in different clock domains. The PHY SAP is 
used for transferring the requests, indications and the associated payload data to the 
other clock domain. 

Interface technology 

Because the interface is implemented on the FPGA, the following interface 
technologies are used: 

• Requests and indications (default)—Handshake of type cluster (native type of the 
corresponding request or indication). 

• Requests and indications (if the request or indication may arrive faster than it is 
processed)—Target-scoped FIFO of type cluster (native type of the 
corresponding request or indication). 
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• Payload data—Target-scoped FIFO of type unsigned byte. 

Data formatting 

No data conversion is necessary because the native data types can be used in all cases. 

Messages 

The messages used in the PHY SAP are listed in Section 7.1. 

3.3.2 Interface between Lower MAC and Middle MAC: Interprocess 
Communication Protocol Interface 

The application framework uses a protocol to transfer data from host to FPGA and vice 
versa which is called interprocess communication protocol (ICP). In the current 
implementation, it is used for communication between lower MAC (implemented on 
the FPGA) and the middle MAC (implemented on the host). The idea of ICP is to send 
messages with fixed structure and varying length over a channel that can transmit a 
stream of bytes such as the direct memory access (DMA) first-in-first-out memory 
buffers (FIFOs). 

Interface Technology 

The interface uses DMA FIFOs (target-to-host or host-to-target FIFOs) of type unsigned 
byte. 

Data Format 

The following ICP packet format is shown in Figure 3-2: 

• The first 8 bytes represent the ICP header. The first 4 bytes contain the message 
length and the second 4 bytes contain the payload length. 

• The second field is the message. The content of this field depends on the 
message. Each message must define encoding and decoding functions which 
translate the request or indication cluster to an array of bytes.  

• The third field is the payload which is associated with the message, for example 
the MAC service data unit (MSDU). If there is no payload associated with the 
message, the field can also be omitted. 

 
Figure 3-2: Format of ICP Packet 

Message 
Length

Payload 
Length Message Payload

ICP header

4 bytes 4 bytes variable size variable size
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Messages 

The messages defined for the interface between lower MAC and middle MAC are listed 
in Section 6.1. 

3.3.3 Interface between Middle MAC and Higher MAC Implementation: 
Middle MAC SAP 

The middle MAC offers an interface which can be used either with the implemented 
higher MAC stub or with an external MAC implementation. It is called Middle MAC 
SAP. It is described in detail in Chapter 4.4. 

Interface technology 

The interface uses user datagram protocol (UDP). Four UDP ports are used as described 
in Section 5.2. 

Data format  

The format of a MAC Middle SAP message is described in Section 5.3. It consists of a 
general message header, a SAP sub-header and multiple sub-messages. The general 
message header contains the message type ID and the reference ID. The SAP sub-
header contains a timestamp and the number of sub-messages. Each sub-message 
contains one parameter set associated with the message. 

Messages 

The messages defined by the MAC Middle SAP are described in Section 5.3. 

3.4 FPGA Design Considerations 
3.4.1 Clocking 
There are three clock domains within the FPGA design. The first clock domain is for the 
RF loop. It depends on the target and is referred to as the data clock. For the USRP RIO 
with 40 MHz bandwidth, the data clock is set to 120 MHz. For the USRP RIO with 120 
MHz or 160 MHz bandwidth, it is set to 200 MHz. For the FlexRIO design, it is set to 
130 MHz. 

The second clock domain is used for PHY baseband processing. This clock rate must 
fulfill the requirements for 80 MHz bandwidth support. For this purpose, a 256-point FFT 
must run for each OFDM symbol. The Xilinx FFT is set to Radix-4, Burst I/O architecture 
to produce a continuous output of this core with minimum latency. With these settings, 
the FFT requires 871 cycles for loading data, executing, and unloading data, which are 
executed sequentially. That process leads to a minimum clock rate of 241.94 MHz, 
assuming an OFDM symbol duration of 3.6 µs with a short guard interval. 

Note: A short guard interval is not implemented in the application framework, but the 
design is prepared for the future use of a short guard interval. Thus, the baseband clock 
is set to 250 MHz for all targets. 
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Based on this clock rate, the computation of each OFDM symbol of 4 µs duration (with 
long guard interval) can take up to 1,000 clock cycles. 

The third clock domain is used for MAC processing. Thus, the MAC and PHY are 
running in different clock domains. Whereas the PHY runs at 250 MHz clock speed to 
be able to meet the SIFS timing, the MAC runs at 100 MHz, which is sufficient for MAC 
data processing in byte2. This relaxes the timing constraints for the MAC and eases its 
extensions. Data between PHY and MAC are exchanged through handshakes for events 
like start requests and end indications and FIFOs for MPDUs.  

The clock domains are asynchronous because they do not use the same reference 
clock. The application framework uses FIFOs to transfer data between the RF and the 
PHY baseband loops. This transfer is straightforward for the RX chain since the samples 
are taken from RF to the higher rate baseband loop as soon as they are available. The 
TX chain produces a large number of samples per packet. This large number of samples 
could lead to overflows when transferring data to the RF loop, which has a fixed sample 
rate of 80 MS/s. To avoid overflows, the application framework generates the TX 
samples OFDM symbol-wise, and a trigger is generated in the RF clock domain. This 
architecture means that the FIFO fills at the same rate as it is read from. 

3.4.2 Timing Constraints 
To ensure efficient use of the shared unlicensed spectrum, the IEEE 802.11 standard 
defines challenging requirements for the interframe timing, particularily for the frame 
transmissions after a frame reception and for the frame transmissions after channel 
sensing. To meet those requirements, tight integration of PHY and lower MAC 
functionalities is needed. In this subsection, we describe the requirements of the 
802.11 specifications for systems with OFDM-based PHY layer and compare the values 
assumed in the 802.11 specifications to actual achieved values of the application 
framework. 

3.4.2.1 Timing Budget for Transmission after Frame Reception 
One example of transmission after frame reception is receiving a data frame and 
transmitting an ACK frame with SIFS. Figure 3-3 shows such a scenario and the 
definitions of processing delays used in the IEEE 802.11 standard (refer to Figure 10-19 
and Section 10.3.7 of Part 11: Wireless LAN Medium Access Control (MAC) and 
Physical Layer (PHY) Specifications [1]).  

                                            
2 The minimal clock rate for MAC could be 31.5 MHz (250 MHz/8 bits). It reflects the 
byte processing in MAC versus the bit processing in PHY. 
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Figure 3-3: Timing Relationships for Transmission after Frame Reception 

Table 3-1 summarizes the requirements of the standard and compares it to the values 
of the application framework. The RX and TX PHY delays, aRxPLCPDelay and 
aTxPLCPDelay respectively, are comprised of processing delays of the I/Q Processing 
modules and Bit Processing Modules (refer to Sections 7.3.3 and 7.3.2 for more 
information). It is assumed that separate RF channels are used for RX and TX, and no 
RX/TX switch is used. Therefore, aRxTxSwitchTime and aTxRampOnTime are assumed 
to be zero. The assumption for D1 being equal to 12.0 µs is calculated from the relation 
SIFS = D1 + M1 + Rx/Tx. 

Table 3-1: Timing Budget for Transmission after Frame Reception 

Time

Medium Busy

D1

M1

Rx/Tx

D2

CCAdel

M2

Rx/Tx

D2

CCAdel

M2

Rx/Tx

D2

CCAdel

M2

Rx/Tx

First backoff slot
(slot 1)

PIFS

DIFS

SIFS Priority access slot
(slot 0)

Slot time
(slot -1)

TX request 
MAC to PHY

PHY starts 
TX

RX indication
PHY to MAC

Frame ends 
here

Name Content Assumption of IEEE 
802.11 Standard (Section 
17.4.4 of  Part 11: Wireless 
LAN Medium Access 
Control (MAC) and 
Physical Layer (PHY) 
Specifications   [1]) 

Value for 802.11 
Application 
Framework 

D1    aRxRFDelay 
+ aRxPLCPDelay IQ proc. 
+ aRxPLCPDelay bit proc. 

 
 
 
~12.0 µs 

0.68 µs 
+ 2.87 µs 
+ 8.36 µs 
= 11.91 µs 

M1 aMACProcDelay 1 <2.0 µs <2.0 µs 
Rx/Tx     aTxPLCPDelay bit 

proc. 
+ aTxPLCPDelay IQ proc. 
+ aRxTxSwitchTime 
+ aTxRampOnTime 
+ aTxRFDelay 

 
 
 
 
 
<2.0 µs 

0.0 µs 
+ 0.0 µs 
+ 0.0 µs 
+ 0.0 µs 
+ 1.29 µs 
= 1.29 µs 
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3.4.2.2 Timing Budget for Transmission after Channel Sensing 
An example of transmission after channel sensing is transmitting a data frame after a 
backoff procedure. Figure 3-4 visualizes such a scenario and the definitions of 
processing delays used in the IEEE 802.11 standard (refer to [1] Figure 10-19 and 
Section 10.3.7). 

 
Figure 3-4: Timing Relationships for Transmission after Channel Sensing 

Table 3-2 summarizes the requirements of the standard and compares it to the values 
of the application framework. These requirements assume that D2 + CCAdel = Air 
Propagation Time + aCCATime, which can be derived from the definitions given in 
Section 10.3.7 of Part 11: Wireless LAN Medium Access Control (MAC) and Physical 
Layer (PHY) Specifications  [1]. aCCATime refers to the time needed for performing the 
CCA operation. 

                                            
3 MAC TX timing control ensures that interframe-spacing and slot timing requirements from IEEE 
specifications are met. 

Time

Medium Busy

D1

M1

Rx/Tx

D2

CCAdel

M2

Rx/Tx

D2

CCAdel

M2

Rx/Tx

D2

CCAdel

M2

Rx/Tx

First backoff slot
(slot 1)

PIFS

DIFS

SIFS Priority access slot
(slot 0)

Slot time
(slot -1)

TX request 
MAC to PHY

PHY starts 
TX

CCA indication
PHY to MAC

Air prop time
+

aCCATime

Other STA 
could start TX

= 
aRxTxTurnaroundTime 

 Sum 16 µs 15.2 µs3 
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Table 3-2: Timing Budget for Transmission after Channel Sensing 

 

3.4.3 Level Plan and Baseband Operating Points 
3.4.3.1 Digital-to-Analog Headroom, Analog-to-Digital headroom, Signal Power 
The digital-to-analog converter (DAC) and analog-to-digital converter (ADC) should 
operate in a manner that avoids clipping and saturation of the outgoing and incoming 
signal, respectively. For proper adjustment of the DAC and ADC operating points, 
consider the following factors: 

• OFDM has a high peak-to-average power ratio approximately between 9 dB to 
12 dB. This range implies that a DAC headroom of 15 dB would avoid clipping.  

• On the receiver side, signals on adjacent channels can occur that are 10 dB 
higher than the desired signal. Having an ADC headroom of 25 dB would also 
handle such signal constellations without running the ADC into saturation. For 
example, with an ADC resolution of 14 bits (as in the case of the USRP RIO 
devices) and a noise figure of approximately 9 dB, approximately 8 effective bits 
available are in the baseband processing, which is sufficient for up to 256-QAM. 

                                            
4 MAC TX timing control ensures that interframe-spacing and slot-timing requirements from IEEE 
specifications are met. 

Name Content Assumption of IEEE 
802.11 standard 
(Section 17.4.4 of 
Part 11: Wireless LAN 
Medium Access 
Control (MAC) and 
Physical Layer (PHY) 
Specifications  [1]) 

Value for 802.11 
Application 
Framework 

Air Prop. 
Time 

    <<1.0 µs Assume for 
instance 0.2 µs for 
60 m distance 

aCCATime CCA detection time  <4.0 µs <2.0 µs 
M2 aMACProcDelay 2 <2.0 µs <2.0 µs 
Rx/Tx     aTxPLCPDelay bit proc. 

+ aTxPLCPDelay IQ proc. 
+ aRxTxSwitchTime 
+ aTxRampOnTime 
+ aTxRFDelay 
= 
aRxTxTurnaroundTime 

 
 
 
 
 
<2.0 µs 

0.0 µs 
+ 0.0 µs 
+ 0.0 µs 
+ 0.0 µs 
+ 1.29 µs 
= 1.29 µs 

 Sum 9 µs 5.5 µs4 
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3.4.3.2 Reference Signals according to IEEE 802.11a/ac 
TX I/Q and RX I/Q and bit processing and the related submodules of the application 
framework follow the power normalization of the test vector generation tool provided by 
IEEE [2]. The test vector generation tool follows Equation (21-11) of Section 21.3.7.4 of 
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1] and, hence, the power of the complex-valued baseband signal is 
normalized to be equal to 1. TX and RX IQ and bit processing and the related 
submodules of the application framework are tested against vectors generated by this 
tool. For any extension towards standard-compliant PHY features, NI strongly 
recommends that you test against vectors generated with this tool. 

3.4.3.3 Complex Fixed Point (Format, Precision) 
The mixed-signal processing output data type is a <1.15> fixed-point value. The peak-to-
average power ratio of OFDM (refer to Section 3.4.3.1) means that the output must be 
extended by two bits in the integer part. Because each bit of a complex data type 
corresponds to 6 dB in signal power, this fact adds a headroom of 12 dB for the 
numeric representation. The data path interface between the baseband and mixed-
signal processing consists of a <3.13> fixed-point value on both the TX and RX path. 
The conversion is done by reinterpretation of the 16 bits. The <3.13> fixed-point format 
allows you to compare against the reference signal of the user guide for 802.11ac 
waveform generator, IEEE 802.11-11/0517r6 [2] (refer to the previous Section 3.4.3.2). 
Furthermore, changing between simulation and operation mode does not require a 
change in scaling. In general, the precision of the fixed-point logic follows the fixed-point 
requirements of the implemented algorithms, and it is not optimized regarding to 
resource usage. 

More information about fixed-point formats and related precisions to avoid clipping and 
saturation can be found in the following sections: 

• Table 7-2 of Section 7.2.4 referring to RX IQ processing  
• Table 7-9 of Section 7.3.3 referring to TX IQ processing 

3.4.4 Global Timestamp 
The system generates a global timestamp derived from the Data Clock (refer to Section 
3.4.1Error! Reference source not found.). Its granularity is 0.1 µs, and it is used as a 
time base of MAC modules and the event tracing. 

4 Host Functionality 
The Host is a sample application that covers all important features of the application 
framework. This covers configuration of the FPGA target and exchanging payload data. 
It furthermore sets parameters during runtime and queries and displays the system 
status. It also acts as the connection between MAC middle on the host and MAC low 
on the FPGA where it supplies configurations and payload data to the TX chain and 
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collects the payload and extracted configurations from the RX chain for further 
processing on the host. 

Each station consists of a host application with associated FPGA code. It is 
recommended to run only one station on a host processor. When running multiple 
stations on one host processor, there may be limitation regarding the achievable 
throughput. 

In the following subsections, an overview of the host architecture is provided. In 
addition, the MAC High Stub and MAC High Abstraction layer are presented. The 
integration of them to the system is also presented. Although the MAC Middle SAP is a 
host functionality, it will be presented in Chapter 5. 

4.1 Front Panel Layout and System Configuration 
The front panel is laid out as shown in Figure 4-1. The bar on the top contains the title, 
some minimal information and instruction, station activation control, and some basic 
health indication, as well as a stop button on the right.  

The left-hand side contains the most important controls such as the primary channel 
center frequency, TX and RX RF ports, subcarrier format, MCS, AGC, and the MAC 
addresses.  

The main part of the front panel (center and right) provides access to detailed 
configuration settings and monitoring parameters distributed over multiple tabs. Those 
tabs are as follows: MAC, RF & PHY, Advanced, Events, and Status.  

The parameters for system configuration are split into three groups, those are: 

Group 1—Parameters can only be changed at system start. Those are the RIO device 
and reference clock which are in the bar on the top. 

Group 2—Parameters can only be changed while the station is off. Those parameters 
are station number, primary channel center frequency, power level, TX and RX 
port numbers, device MAC Address, the dot11RTSThreshold and the retry limits 
dot11ShortRetryLimit and dot11LongRetryLimit. 

Group 3—Parameters can be changed at any time. Such parameters are subcarrier 
format, MCS, AGC mode, destination MAC address, data source and data sink as 
well as the backoff parameter. 

Refer to the LabVIEW Communications 802.11 Application Framework Getting Started 
Guide for a detailed description of all controls and indicators [3].  
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Figure 4-1: Front Panel Layout 

4.2 Block Diagram Architecture 
The host block diagram follows a basic layout scheme shown in Figure 4-2. On the left, 
there is the initialization code which loads the bitfile to the FPGA, starts the DMA 
FIFOs, and prepares local resources such as queues. In the center of the VI there are 
six loops which are executed continuously on runtime. Those loops are covering the 
jobs of configuration, data exchange, and status display. On the right-hand side, there is 
the cleanup code which is executed on system shutdown. The host executes 
sequentially as indicated by the yellow arrows (Figure 4-2) in the following order: 

1. Initialization 
2. Main Program 
3. Cleanup 

Handles that are persistent at runtime (such as FPGA interfaces, UDP port handles, or 
FIFOs) are grouped in a session cluster to minimize the number of wires on the block 
diagram. The different loops are further explained in the next sections. 
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Figure 4-2: Host Schematic Block Diagram 

4.2.1 Initialization 
Initialization starts by resetting all controls and indicators in a sequence structure to 
initialize all controls and indicators to a known state. This also ensures proper execution 
after a previous run. The startup procedure is as follows: 

1) Reset all controls and indicators. 
2) Create a stop notifier that will be used in the main program. 
3) Initialize the system. 

a) Identify USRP bandwidth. 
b) Load bitfile. 
c) Open UDP port. 
d) Setup FPGA target based on the selected reference clock. 
e) Start DMA FIFOs. 
f) Initialize the required queues. 

4) Create a notifier for the logging entries using the initial value of max log level, which 
has different states. 

4.2.1.1 Data Exchange 
A session cluster is used on the host to store local resources such as the FPGA 
interface, queues, UDP ports, and so on. It is also used to share information between 
the different loops of the main program. 

Configuration

Data Source and
Data Sink

Host⇒UDP 
UDP⇒Host

Initialization Cleanup

MAC High Stub and 
MAC High Abstraction

Host  Host

MAC Middle SAP and 
MAC Middle

Host  Target

Status Display
(simple display)
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Table 4-1 lists the queues used to buffer and pass payload and status information within 
the system. 

Table 4-1: Message Queues Used in Host Application 

Queue Purpose 
MAC High Requests Stores the payload data given from the data source (UDP or 

pseudo-noise (PN)) for the target transmitter. The MAC High 
Abstraction reads the packets from the queue and includes 
each packet in an MSDU TX payload sub-message. 

Triggered TX Requests Stores the reference ID and MSDU length of each TX 
request. The reference ID is resorted in the Generated MAC 
SAP TX status indication node when reading the MAC TX 
END indication from the target and generating the MAC SAP 
TX Status indication. 

receive queue Buffer payload received from the target. 
receive throughput 
queue 

Stores information about received payload size and 
timestamps (used for throughput graph display). 

4.2.2 Main Program 
The main program executes in multiple parallel while loops. The following functionality 
is implemented on the host. 

• System Configuration: Configure and change the parameters that can be static 
or dynamic as it is described in Section 4.1. Refer to the LabVIEW 
Communications 802.11 Application Framework 2.2 Getting Started Guide for 
more details about the system configuration [3].  

• Data source and data sink: The data source reads data either from a UDP port 
or from a random data (pseudo-noise, PN data) source. The data sink sends the 
received data to a UDP port, if enabled. 

• MAC High Stub: Reads the queue that is filled from the data source. If data is 
available, it requests a packet transmission by creating corresponding requests 
that are handled by the MAC High Abstraction Layer. If the MAC High 
Abstraction Layer indicates a received packet, it extracts the payload data and 
writes it to the queue which is read by the data sink. 

• MAC High Abstraction Layer: It is provided to create the required interfaces 
with the corresponding checks between the MAC High Stub and the MAC 
Middle SAP. Furthermore, it provides an example to the user to create own 
interface between an external upper MAC application and the MAC Middle SAP. 

• MAC Middle SAP: It provides the required interfaces between the middle and 
lower MAC functionalities provided by the application framework and the MAC 
High Abstraction or external higher MAC applications. The message-based 
interface is described in Chapter 5. 

• MAC Middle: Implements the following middle MAC functions: Sequence 
Number Assignment described in Section 6.3.1 and Duplicate Detection 
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described in Section 6.4.5. They are implemented within the MAC Middle SAP 
nodes. 

• AGC: The AGC mechanism on the host allows the user to switch between a 
manual gain configured on the front panel and the AGC implemented on the 
FPGA as described in Section 7.2.1. The AGC target signal power that enables 
the gain control can be configured from the host. 

• Performance and Statistics Display: 
o Display MAC TX and MAC RX Statistics. 
o Monitor transmission and reception parameters. 

 Display channel transfer function. 
 Display RX constellation. 
 Display TX and RX power spectrums. 
 Display RF input power and baseband RX power. 

o Evaluate and display throughput, TX block error rate and TX packet error 
rate. 

o Monitor FIFO overflows. 
o Evaluate and display the counters at different layers of the following 

messages: TX requests, TX Confirmations, TX Indications, and RX 
Indications. 

• Event Logging: Create log file for error messages; each log message has the 
following information: the module name, the error message, the log level, and 
the time stamp.  

4.2.2.1 Timing Considerations 
The loops for data transmission between target and host as well as between host and 
UDP ports run at a fast rate to achieve the maximal possible throughput. They are 
running at 10 ms and 5 ms, respectively. The loops for configuration and status display 
run every 100 ms to enable a responsive system. The loop to display events, 
constellation, channel estimation, and spectral plots runs every 250 ms. 

4.2.2.2 Data Exchange 
Data exchange of data which requires high throughput such as the TX and RX payload is 
realized with queues. The queues available on the host are listed in Section 4.2.1.1. 

Data exchange of status parameters that are not changed often, like the Station Active 
flag, is realized with duplicated terminals. This means that the same terminal is read at 
multiple places, typically from within different loops. This approach was chosen to 
minimize the number of wires on the block diagram. The session cluster which contains 
the local resources is also realized as duplicated terminal. 

4.2.3 Stop Procedure and Cleanup 
The host must ensure a proper shutdown. All handles to hardware and software 
resources which were allocated during initialization are released during cleanup. 
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4.2.3.1 Stop Procedure 
All loops need to be stopped before the cleanup code is executed. The following 
conditions can stop a loop: 

• An error occurred in the loop. 
• The stop button has been pressed. Note that the stop button is monitored in one 

loop only. 
• Another loop has stopped for one of the previous conditions. 

The first two conditions only stop a single loop. The other loops must be notified to stop 
as well. The stop notifier is used for this purpose. The loop which stopped first creates 
a notifier using Stop on Error. This notifier is received by all other loops using Check 
Stop. Upon receiving the notifier, the other loops will stop as well. See Figure 4-3 for a 
typical use of both nodes. 

 
Figure 4-3. Use of the Stop Notifier in Host Loops 

Users need to ensure to follow this design pattern when adding new loops to the hosts. 

4.2.3.2 Cleanup Procedure 
The cleanup procedure is executed in two steps. First, hardware related handles, such 
as FPGA reference, is closed. Second, data handling such as UDP handle is closed, as 
shown in Figure 4-4.  

The host uses the information from the session cluster to identify resources to be 
deallocated. 

 
Figure 4-4. Closing Data Handling Related Resources on the Host 

4.3 MAC High Stub 
The 802.11 MAC High Stub function provided by the application framework is just a 
placeholder for a third party MAC connected to the MAC High Abstraction Layer. It does 
not contain actual 802.11 MAC High functionality. The functionality is limited to the 
following: 
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• Reading of the MSDU TX payload data (with potentially varying size) from a queue 
which is filled by a data source. 

• Generation of the corresponding TX request in the MAC High Abstraction Layer 
specific format which includes the generation of corresponding configuration 
parameters needed by the MAC Middle SAP. 

• Reception of RX indications from the MAC High Abstraction Layer. Extraction of 
reception parameters, and/or payload. 

• Writing of the MSDU RX payload data into the queue of data sink. 

4.4 MAC High Abstraction Layer 
An 802.11 MAC High Abstraction Layer is needed to connect the application framework 
to a third party 802.11 higher MAC application, whose interfaces typically aren’t (fully) 
compliant to the message based MAC Middle SAP (API) provided by the application 
framework. The implementation of MAC High Abstraction layer provides an example to 
the user to create own interface between an external application and the MAC Middle 
SAP. The following are general functionalities of the 802.11 MAC High Abstraction 
Layer: 

• Translate MAC high specific requests into the appropriate request messages and 
message sequences defined for the MAC Middle SAP. 

• Receive, decode, evaluate, and handle the confirmation and indication messages 
received from the application framework MAC Middle SAP and provide the 
information extracted from these messages to the MAC high in the format required 
by the MAC high. 

The block diagram shown in Figure 4-5 gives an overview of the MAC High Abstraction 
module structure and interfaces to the MAC High Stub presented in Section 4.3 and 
MAC Middle SAP presented in Chapter 5. The definitions of the presented messages 
between different layers shown in Figure 4-5 are described in Section 5.3. The MAC 
High Abstraction has the following three top-modules: 

• MAC TX Request Confirm Abstraction: It converts the configuration and payload 
inputs into MAC SAP TX request messages. Then, it writes them to the 
corresponding UDP socket: first the MAC SAP TX Configuration Request (MAC SAP 
TX CONFIG REQ), then the MAC SAP TX Payload Request (MAC SAP TX PAYLOAD 
REQ).  

• Receive MAC SAP TX Status Indication: It dequeues two MAC SAP TX 
Confirmation messages, one message per each TX request and checks if the 
received header IDs match the ones of the created MAC SAP TX Configuration 
Request and MAC SAP TX Payload Request. Finally, it forwards the messages’ 
confirmation states. 

• Receive MAC SAP RX Indications: It dequeues the following MAC SAP RX 
indication message pairs from MAC Middle SAP: MAC SAP RX Configuration 
Indication (MAC SAP RX CONFIG IND) and MAC SAP RX Payload Indication (MAC 
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SAP RX PAYLOAD IND). It decodes the messages and checks if the sequence ID 
matches. The MAC SAP RX Configuration Indication should be received before MAC 
SAP RX Payload Indication. In addition, it checks configuration and payload 
messages for consistency (for example, matching MSDU indices and MSDU length 
values). Finally, it calls the MAC High RX Stub function and provides the extracted 
configuration and status parameters and payload data. 

 
Figure 4-5: MAC High Stub and MAC High Abstraction Modules and Interfaces 

4.4.1 MAC High Abstraction Interfaces 
The outer interface to/from MAC high Abstraction and MAC TX and RX Stub and the 
inner interface to/from MAC high Abstraction and MAC Middle SAP are summarized in 
the following, see  Figure 4-5. The description of every message is presented in Section 
5.3. 

4.4.1.1 Outer Interface 
The following are inputs from MAC High TX Stub to TX Request Confirm Abstraction: 

• MSDU TX parameters 
• PHY TX parameters 
• MSDU TX payload 

The following are outputs to MAC High Stub: 
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• From TX Request Confirm Abstraction: 
o Confirmation Status  

• From Receive MAC SAP TX Status Indication: 
o MAC TX Status  

• From Receive MAC SAP RX indications: 
o MSDU RX parameters  
o PHY RX parameters 
o RX Status  
o MSDU RX Payload  
o Additional MSDU RX Parameters  

4.4.1.2 Inner Interface 
Internally, the MAC High Abstraction Layer uses the interface which is provided by the 
MAC Middle SAP. It is described in Section 5.1.1. 

4.5 Integration into Overall System 
Figure 4-6 provides a simplified block diagram of the overall system partitioning of the 
application framework. It shows where the MAC High Stub and MAC High Abstraction 
are integrated in the 802.11 host application. Furthermore, it shows how and where the 
MAC Middle SAP, presented in Chapter 5, is integrated into the overall system. 

The MAC Middle SAP runs within the 802.11 host application. The message-based 
interface connects to the MAC High Abstraction using UDP ports. Internally it is directly 
connected to the MAC Middle functions Sequence Number Assignment and 
Duplicate Detection, which run on the host.  
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Figure 4-6: Overall System Diagram  

4.5.1 Operating with External MAC High Application 
The implementation of MAC High Abstraction layer and MAC Stub provides an example 
to the user to create own interface between an external application and the MAC 
Middle SAP. The MAC Middle SAP enables the connection of the application framework 
to an external MAC high application. For this, the 802.11 host application supports 
disabling of MAC High Abstraction and MAC Stub with its data and control interfaces. 
This operation mode is illustrated in Figure 4-7. 
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Figure 4-7: Operating with External MAC High Application 

5 Middle MAC SAP 
The MAC Middle SAP provides the interface between the MAC middle functionality 
provided by the application framework and a potential external upper MAC realization or 
other external applications. The API of the application framework allows external 
applications to use the MAC & PHY functionalities provided by the application 
framework. It is provided on top of MSDU Sequence Number Assignment in the MAC 
TX path as in Section 5.3 and on top of the Duplicate Detection in the MAC RX path as 
in Section 5.4. A message-based interface to/from the upper MAC application is 
provided. The provided message-based interface follows the general API concept and 
rules. The interface towards the MAC Middle implementation uses an event driven 
request & indication approach. The interface primitive implementation follows the 
requirements of the MAC Middle implementation. 
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The block diagram shown in Figure 5-1 gives an overview of the MAC Middle SAP-
module structure as follows: 

• It shows the outer interface between MAC middle SAP and MAC high and the 
corresponding messages in this interface. 

• It shows the following top nodes of MAC Middle SAP: 
o MAC SAP TX Request Confirmation Handler 
o Generate MAC SAP TX Status Indication 
o Generate MAC SAP RX Indication 

• It shows the inner interface between MAC middle SAP and MAC middle and the 
corresponding messages in this interface. In addition, it shows for each top node 
in MAC Middle SAP which functions are called from the MAC middle. 

In the following subsections, the interfaces and the functionalities of each node will be 
described. 

 
Figure 5-1: MAC Middle SAP Sub-Module Structure and Interfaces 

5.1 Middle MAC SAP Interfaces 
The interfaces of MAC Middle SAP are classified as either outer interface to/from upper 
MAC or inner interface to/from middle MAC. The messages list of each interface are 
presented in the following subsections. 

5.1.1 Outer Interface to/from Upper MAC 
From Figure 5-1, the inputs of the outer interface to upper MAC are as follows. The 
description of every message is presented in Section 5.3. 
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• MAC SAP TX CONFIG REQ (MAC SAP TX Configuration Request) 
o Parameter sets:   

 MSDU TX parameters 
 PHY TX parameters 

• MAC SAP TX PAYLOAD REQ (MAC SAP TX Payload Request) 
o Parameter sets:   

 MSDU TX payload 

From Figure 5-1, the outputs of the outer interface from upper MAC are as follows. The 
description of every message is presented in Section 5.3. 

• MAC SAP TX CNF (MAC SAP TX Confirmation) 
o Parameter sets:   

 MAC SAP TX Confirmation 
• MAC SAP TX STATUS IND (MAC SAP TX Status Indication) 

o Parameter sets: 
 MAC TX Status 

• MAC SAP RX CONFIG IND (MAC SAP RX Configuration Indication) 
o Parameter sets: 

 MSDU RX parameters 
 PHY RX parameters 
 MAC RX status 
 (Additional MSDU RX Parameters) 

• MAC SAP RX PAYLOAD IND (MAC SAP RX Payload Indication)  
o Parameter sets: 
 MSDU RX payload 

5.1.2 Inner Interface to/from Middle MAC 
From Figure 5-1, the inputs of the inner interface to middle MAC are as follows:  

o MAC MSDU TX CNF (MAC MSDU TX Confirmation) 
o Parameter sets: 

 TX confirmation status 
• MAC MSDU TX End IND (MAC MSDU TX End Indication) 

o Parameter sets: 
 TX Status 
 Number of transmission tries 

• MAC MSDU RX IND (MAC MSDU RX Indication) 
o Parameter sets: 

 MSDU data 
 MPDU configuration 
 RX Status 
 RX Vector 

From Figure 5-1, the outputs of the inner interface from middle MAC are as follows:  
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• MAC MSDU TX REQ (MAC MSDU TX Request) 
o Parameter sets: 

 MSDU data 
 MPDU configuration 
 TX Vector 

5.2 UDP Socket Assignment 
In the application framework, only UDP is supported. As it can be seen in Figure 5-1, the 
MAC Middle SAP is connected through a UDP transport layer to the MAC High 
Abstraction, on the other side it is directly connected to the MAC Middle, which is the 
upper layer of the application framework MAC and is running on the host, too.  

To simplify the design, a different UDP port has been assigned for each message needs 
to be transferred between MAC high and MAC Middle SAP or vice versa. The UDP 
ports are quasi statically and have been set on dependence on station number (instance 
ID). As a result, different stations should use different instance IDs to assign different 
UDP ports for each station. It can help to mitigate wrong UDP port assignments in 
multi-station setups so that there is no conflict with existing port assignment. 

For example, if you assume the station number is 𝑛𝑛. Then the assigned UDP ports for 
station number 𝑛𝑛 are as follows: 

• UDP port of MAC SAP TX REQ (TX CONFIG and Payload): 12100 +  𝑛𝑛 
• UDP port of MAC SAP TX CNF: 12200 +  𝑛𝑛 
• UDP port of MAC SAP TX Status IND: 12300 +  𝑛𝑛 
• UDP port of MAC SAP RX IND (RX CONFIG and Payload): 12400 +  𝑛𝑛 

 
Figure 5-2: UDP Socket Assignment between MAC Middle SAP and MAC High Abstraction 

5.3 Outer Interface Message Definitions 
The general message structure of each message to/from upper MAC is shown in Figure 
5-3. Each message has the following fields: 

• General message body: The header of the message. 
• Message body: It can have a number of sub-messages. Each sub-message has 

two fields: 
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o SAP sub-header: The header of the sub-message 
o Sub-message body 

From Figure 5-3, each message has a specific type ID. Table 5-1 lists the specific 
message type IDs supported in the application framework. 

In the following subsections, the contents of each message are described. 

 
Figure 5-3: MAC Middle SAP—General Message Structure 

Table 5-1. Supported Specific Message Type IDs 

Message name 
 

Message ID (binary) 
b15 … b0 

Message ID 
(hex) 

MAC SAP TX CONFIG REQ 0101 0001 0000 0001 0x5101 
MAC SAP TX PAYLOAD REQ 0101 0001 0000 0010 0x5102 
MAC SAP TX CNF 0101 0010 0000 0001 0x5201 
MAC SAP TX STATUS IND 0101 0000 0000 0001 0x5001 
MAC SAP RX CONFIG IND 0101 0000 1000 0001 0x5081 
MAC SAP RX PAYLOAD IND 0101 0000 1000 0010 0x5082 

5.3.1 General Message Header 
Table 5-2 presents the contents of the general message header. 

Table 5-2. General Message Header Contents 

Field Type/ 
Length 

Description 32-bit 
Words 

message type ID U16 Message type identifier 2xU32 
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reference ID U16 Reference identifier used for the 
following: 
• Mapping requests to the 

corresponding confirmation messages 
and special response indications. 

• Detection of lost indications or 
requests. 

 
For requests and common indications, the 
content must be generated by a message 
type specific counter which starts at zero 
and is incremented with every newly 
generated request or indication of the 
specific type. 
 
For confirmation messages, this field is 
filled with the same reference ID as used 
in the handled request.  
 
For the MAC SAP TX STATUS IND sent in 
response to a MAC SAP TX request, this 
field is filled with the reference ID of the 
corresponding MAC SAP TX CONFIG 
REQ. 

instance ID U8 Instance identifier used to support parallel 
API connections of the same type. 
Different stations should use different 
instance IDs to debug potentially wrong 
UDP port assignments in multi-station 
setups. The instance ID is the station 
number. 

message body 
length 

U24 Message body length in bytes. 

 

5.3.2 SAP Sub-Header 
Table 5-3 presents the contents of the SAP sub-header. 

Table 5-3. SAP Sub-header Contents 

Field Type/ 
Length 

(Sup-
ported) 
Value 
range 

Description 32-bit 
Words 

reserved U16 0 Reserved field to be filled with zero. 2xU32 
 timestamp U32  Timestamp: 0.1 µs tick count (wrapping 

counter) 
Note: The nominal resolution is aligned to 
the FPGA tick count implementation. The 
LabVIEW host SAP realization will use the 
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LabVIEW tick count which only provides an 
actual resolution of 1 µs (with some jitter 
uncertainty), even if the values are provided 
with the nominal 0.1 µs resolution at the 
interface. 

number of 
sub-messages 

U8  Number of sub-messages contained in the 
hierarchical message. 

confirm mode 
[or reserved] 

U8 {[0], 1} 
 

Confirm mode (only used in requests) 
• 0: No confirmation required 
• 1: Standard confirmation required 

The application framework only supports 1. 
Requests with 0 will be rejected. 
 
Note: In non-request messages, the field 
will be reserved and won’t be evaluated or 
checked. It should be filled with 0. 

5.3.3 Byte Order and Bit Order 
The MAC Middle SAP message parameters are transmitted in network byte order, 
which is equal to big-endian byte order (the highest byte first while the lowest byte 
last). The network byte order has been selected to be neutral (platform independent) 
byte order, since the host byte order depends on hardware platform (CPU architecture) 
and/or operating system, which can be different between the hardware system running 
the application framework and the system running an external MAC high application. 
The operating system typically provides functions to convert from platform dependent 
host byte order to network byte order and vice versa. The bit order within bytes is 
based on the concept of most significant bit (MSB) first and least significant bit (LSB) 
last. 

 
Figure 5-4: Illustration of Byte Order and Bit Order Defined for the Transmission of MAC Middle SAP 
Messages 
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5.3.4 MAC SAP TX CONFIG REQ 
5.3.4.1 Overall Message 
The MAC SAP TX CONFIG REQ requests a packet transmission. Table 5-4 lists the 
contents of the overall message. Two sub-messages MSDU TX parameters and PHY TX 
parameters are defined. 

Table 5-4. Overall Message of MAC SAP TX CONFIG REQ 

Field Type/ 
Length 

(sup-
ported) 
Value 
range 

Description 32-bit 
words 

message type ID U16 0x5101 Message type identifier 2xU32 
reference ID U16  See Section 5.3.1 
instance ID U8  See Section 5.3.1 
message body 
length 

U24  message body length in bytes = 
MSDU TX parameters (parameter 
set body length) + 4 + PHY TX 
parameters (parameter set body 
length) + 4 + 8 + 8   

reserved U16  See Section 5.3.2 2xU32 
 timestamp U32  See Section 5.3.2 

number of sub-
messages 

U8 2 For a single MSDU, the MAC SAP 
TX CONFIG REQ must always 
contain the following mandatory 
parameter sets: 

• MSDU TX parameters 
• PHY TX parameters 

confirm mode U8 1 See Section 5.3.2 
For number of sub-messages (in MAC SAP TX CONFIG REQ) 
 sub-message 

type 
U8 {0, 1} Sub-message type of MAC SAP 

TX CONFIG REQ 
0: MSDU TX parameters 
(mandatory) 
1: PHY TX parameters 
(mandatory) 

U32 

 parameter set ID U8 0 0 
 parameter set 

body length 
U16  Parameter set body length in 

bytes without the following fields: 
• sub-message type 
• parameter set ID 
• parameter set body length 

 parameter set 
body 

<parameter 
set body 
length> 

 Contents the specific sub-
message according to the 
selected parameter set as it is 
shown in the following two 
subsections. 
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5.3.4.2 Parameter Sets 
5.3.4.2.1 MSDU TX Parameters 
Table 5-5 presents the contents of the MSDU TX parameters sub-message. 

Table 5-5. MSDU TX Parameters 

Field Type/ 
Length 

(Sup-
ported) 
Value 
range 

Description 32-bit 
words 

Sub-message/parameter set of MAC SAP TX CONFIG REQ 
 sub-message type U8 0 Sub-message type of MAC SAP 

TX CONFIG REQ. 
0: MSDU TX parameters 
1: PHY TX parameters 

U32 

 parameter set ID U8 0 0 
 parameter set body 

length 
U16 41 Parameter set body length in 

bytes. 
 MSDU index U8 0…255 Index to associate this 

configuration sub-message with 
the corresponding MSDU TX 
payload sub-message in the 
MAC SAP TX PAYLOAD REQ. 
It is incremented with every 
(new) MSDU TX parameters 
sub-message. 

 

 frame type U8 {0,2} Frame type as defined for Type 
field in frame control field of 
MAC header [1]. 
0: management frames 
1: control frames 
2: data frames 
3: extension frames 
 
Note: Only management 
frames and data frames are 
supported at the MAC middle 
SAP (TX side). 

 

 subtype U8 Depends 
on frame 
type 

Subtype as defined for subtype 
field in frame control field of 
MAC header [1]. Supported 
value range: 
0…15: for all management 
frames (frame type = 0)  
0: for only data frames of 
subtype data (frame type = 2) 

 

 to DS U8 {0,1} As defined for the 
corresponding control field in 
the MAC header [1]. 
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 from DS U8 {0,1} As defined for the 
corresponding control field in 
the MAC header [1]. 

 

 power 
management  

U8 0 
 

See definition of related field in 
frame control field of MAC 
header [1]:  
0: Indicates to active state 
mode 
1: Indicates to power save (PS) 
mode 
 
In the application framework, 
only the active state is 
supported.  

 

 more data U8 0 See definition of related field in 
frame control field of MAC 
header [1].  It is used by AP to 
indicate (more data ==1) to e.g. 
a station in PS mode that more 
MSDUs or MAC management 
protocol data unit (MMPDU) are 
buffered for that station at the 
AP. 
 
In the application framework, 
only the value of 0 is 
supported. 

 

 protected frame U8 0 See definition of related field in 
frame control field of MAC 
header [1]. The value of 1 
indicates that frame body is 
encrypted. 
 
In the application framework, 
only the value of 1 is 
supported, that is non-
encrypted transmissions. 

 

 HTC / order U8 0 See definition of related field in 
frame control field of MAC 
header [1]. It has the following  
meanings in dependence on 
the frame type, subtype, and 
TX vector (FORMAT): 
1. For non QoS data frames: 

0: Non-strictly-ordered 
service class 
1: Strictly-ordered service 
class 
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2. For QoS data or 
management frames in 
HT/VHT format: 
0: Frame does not contain 
HT control field 
1: Frame contains HT 
control field 

 
In the application framework, 
only the value of 0 is 
supported. 

 source address (SA) U48  Source station MAC address 
(individual/group bit must be 0 
because it is checked by SAP) 

 

 destination address 
(DA) 

U48  Destination station MAC 
address 

 

 basic service set 
identifier (BSSID) 

U48  Basic service set identifier 
• Individual/group bit must 

be 0 
• Universal/local bit set 

to 1 

The application framework does 
not support wildcard BSSI, 
since this is represented by all 
binary 1s. 

 

 recipient address 
(RA) 

U48  Recipient station MAC address, 
only required or used if  
from DS is 1 and to DS is 1 

 

 transmitter address 
(TA) 

U48  Transmitter station MAC 
address, only required or used 
if from DS is 1 and to DS is 1. 
 
Individual/group bit must be 0 
since it is checked by SAP. 

 

 MSDU length U16 0…4065 MSDU length in bytes  
 

5.3.4.2.2 PHY TX Parameters 
Table 5-6 presents the contents of the PHY TX parameters sub-message. In addition, 
Table 5-7 shows the supported combinations of TX PHY parameters.  

Table 5-6. PHY TX Parameters 

Field Type/ 
Length 

(Sup-
ported) 
Value 
range 

Description 32-bit 
words 

Sub-message/parameter set of MAC SAP TX CONFIG REQ 
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 sub-message 
type 
(parameters set) 

U8 1 Sub-message type of MAC SAP TX 
CONFIG REQ 
0: MSDU TX parameters 
1: PHY TX parameters 

U32 

 parameter set ID 
(parameter set 
version) 

U8 0 0: For 802.11 Application Framework 

 parameter set 
body length 

16 4 Parameter set body length in bytes 

 MSDU index U8 0…255 Index to associate this configuration 
sub-message with the corresponding 
MSDU TX payload sub-message in the 
MAC SAP TX PAYLOAD REQ. It is 
incremented with every PHY TX 
parameters sub-message 

 

 format U8 0…2 Target PHY format. It combines the 
TX/RX vector parameters FORMAT 
and NON_HT_MODULATION as 
defined in Part 11: Wireless LAN 
Medium Access Control (MAC) and 
Physical Layer (PHY) Specifications 
[1], Table 21-1, as follows:  
• 0: NON_HT_OFDM 

o FORMAT—NON_HT 
o NON_HT_MODULATION—

OFDM). Supported for 20 
MHz bandwidth only 

• 1: NON_HT_DUP_OFDM 
o FORMAT—NON_HT 
o NON_HT_MODULATION—

NON_HT_DUP_OFDM 
• 2: VHT 

o FORMAT—VHT)  

 

 bandwidth U8 0…2 Channel bandwidth. The supported 
bandwidths are as follows: 
0: 20 MHz 
1: 40 MHz 
2: 80 MHz 
3: 160 MHz (not supported) 
4: 80 MHz + 80 MHz (not supported) 
 
Supported bandwidth depends on the 
format selection, see Table 5-7. 

 

 MCS U8 0…9 Interpretation depends on format. If 
format is 2 (VHT), the MCS can be 
between 0 and 9, see Tables 21-30, 
21-38, and 21-48 in Part 11: Wireless 
LAN Medium Access Control 
(MAC) and Physical Layer (PHY) 
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Specifications [1]. If format is not 2, 
the MCS is mapped to L_DATARATE 
as follows: 
        0:    6 Mbit/s 
        1:    9 Mbit/s 
        2:  12 Mbit/s 
        3:  18 Mbit/s 
        4:  24 Mbit/s 
        5:  26 Mbit/s 
        6:  48 Mbit/s 
        7:  54 Mbit/s 
 
Supported range depends on format 
and bandwidth selection. 

-Table 5-7: Supported Combinations of TX PHY Parameters 

                      
Bandwidth 
Format      

20 MHz: 
0 

40 MHz: 1 80 MHz: 2 160 MHz: 3 80+80MHz: 4 

NON_HT_OFDM: 1 MCS 
0…7 

Not 
supported 

Not 
supported 

Not 
supported 

Not 
supported 

NON_HT_DUP_OFDM: 2 MCS 
0…7 

MCS 0…7 MCS 0…7 Not 
supported 

Not 
supported 

VHT: 2 MCS 
0…8 

MCS 0…9 MCS 0…4 Not 
supported 

Not 
supported 

 

5.3.5 MAC SAP TX PAYLOAD REQ  
5.3.5.1 Overall Message 
The MAC SAP TX PAYLOAD REQ provides the payload data (MSDU) associated with 
the MAC SAP TX CONFIG REQ. Table 5-8 lists the contents of the overall message. The 
payload is contained in the MSDU TX payload parameter set. 

Table 5-8. Overall message of MAC SAP TX Payload request 

Field Type/ 
Length 

Value 
range 

Description 32-bit 
words 

message type ID U16 0x5102 message type identifier 2xU32 
reference ID U16  See Section 5.3.1 
instance ID U8  See Section 5.3.1 
message body 
length 

U24  Message body length in bytes 
= MSDU TX payload (parameter 
set body length) + 4 + 8 + 8   

reserved U16 0 See Section 5.3.2 2xU32 
 timestamp U32  See Section 5.3.2 

number of sub-
messages 

U8 1 See Section 5.3.2 
In the application framework, 
one MAC SAP TX PAYLOAD 
REQ mandatorily contains 
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exactly one MSDU TX payload 
sub-message providing the 
payload for a single MSDU only. 

confirm mode U8 1 See Section 5.3.2 
For number of sub-messages (in MAC SAP TX PAYLOAD REQ) 
 sub-message 

type 
(parameters set) 

U8 0 Sub-message type defined for 
MAC SAP TX PAYLOAD REQ  
0: MSDU TX payload 
(mandatory) 

U32 

 parameter set ID 
(parameter set 
version) 

U8 0 0: It contents type “direct data”. 

 parameter set 
body length 

U16  Parameter set body length in 
bytes without the following 
fields: 
• sub-message type 
• parameter set ID 
• parameter set body length 

 Parameter set 
body 

<parameter 
set body 
length> 

 It contents  the specific sub-
message according to the 
selected parameter set as it is 
shown in Section 5.3.5.2. 

 

 

5.3.5.2 Parameter Sets 
5.3.5.2.1 MSDU TX Payload 
Table 5-9 presents the contents of the MSDU TX payload sub-message.  

Table 5-9. MSDU TX Payload 

Field Type/ 
Length 

(Sup-
ported) 
Value 
range 

Description 32bit 
words 

Sub-message/parameter set of MAC SAP TX PAYLOAD REQ 
 sub-message type 

(parameters set) 
U8 0 Sub-message type defined for 

MAC SAP TX PAYLOAD REQ  
0: MSDU TX payload 

U32 

 parameter set ID 
(parameter set 
version) 

U8 0 0: It contents type direct data 

 Parameter set body 
length 

U16  parameter set body length in 
bytes = MSDU length + 4 

 MSDU index U8 0…255 Index to associate the MSDU 
data contained in this sub-
message to the corresponding 
configuration sub-messages 
contained in the SAP TX CONFIG 
REQ 

U32 
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 reserved  U8 0 Reserved field to ensure 32-bit 
alignment 

 MSDU length U16 0…4065 MSDU length in byte without 
padding bytes 

 MSDU data5 <MSDU 
length> 
x U8 

 MSDU data   

 

5.3.6 MAC SAP TX CNF 
5.3.6.1 Message Definition 
The MAC SAP TX Confirmation is the response to a MAC SAP TX CONFIG REQ and the 
associated MAC SAP TX PAYLOAD REQ. It contains the confirmation status which 
indicates if the request was handled successfully or otherwise which kind of error 
occurred. Table 5-10 lists the contents of the overall message.  

Table 5-10. Overall Message of MAC SAP TX CNF 

Field Type/ 
Length 

(sup-
ported) 
Value 
range 

Description 32bit 
words 

message type ID U16 0x5201 Message type identifier 2xU32 
reference ID U16  Filled with reference ID extracted 

from the incoming request for 
which the confirmation is 
generated 

instance ID U8  See Section 5.3.1 
message body 
length 

U24  Message body length in bytes = 
MAC confirmation (parameter set 
body length) + 4 + 8 + 8   

reserved U16  See Section 5.3.2 2xU32 
 timestamp U32  See Section 5.3.2 

number of sub-
messages 

U8 1 
 

See Section 5.3.2. In the 
application framework, only one 
parameter set is defined for this 
message, which is mandatory. 

reserved U8 0 Filled with value 0, see Section 
5.3.2 

For number of sub-messages in MAC SAP TX CNF 
 sub-message type 

(parameters set) 
U8 0 Sub-message type of MAC SAP 

TX CNF 
0: MAC TX confirmation 
(mandatory) 

U32 

                                            
5 If MSDU data alignment to words wider than U8 (1 byte) is needed for the physical transport medium, 
this has to be ensured by the modules (VIs) supporting the access to the specific physical transport medium 
by adding zero padding bytes at the end of the message byte stream. 
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 parameter set ID 
(parameter set 
version) 

U8 0 0: For 802.11 Application 
Framework 

 parameter set 
body length 

U16 1 Parameter set body length in bytes 

 confirmation 
status 

U8  (Common) confirmation status see 
Section 5.3.6.2 

 

 

5.3.6.2 Confirmation status 
For every MAC TX request message, a parameter check is done to validate if the 
request and its parameters are supported, and if the requests are received in the right 
consequence. Furthermore, a check for any mismatch is executed. Table 5-11 shows 
the description of the possible cases that the reported confirmation status to MAC high 
can have. 

Table 5-11. Confirmation Status Description 

Value Name Description 
0 SUCCESS Request accepted and sent to the subsequent module; 

no error occurred during handling of the request. 
1 UNKNOWN MESSAGE  The primitive (message type ID) is unknown or 

undefined. 
2 MESSAGE NOT SUPPORTED The primitive (message type) is defined but not 

supported at the specific interface. 
3 UNKNOWN PARAMETER 

(SET) 
One or more of the received parameter sets or 
parameters are not part of the message. 

4 MISSING PARAMETER (SET) One or more of the (mandatory) parameter sets or 
parameters of the received message are missing. 

5 PARAMETER (SET) 
REPETITION 

One or more of the received parameter sets or 
parameters have been set more than once. 

6 RANGE VIOLATION One or more parameters are out of the supported range, 
that is, <confirm mode> is in allowed range, only 
requests with confirm mode == 1 are supported. 

7 STATE VIOLATION The received request is not supported in the current state 
of operation. This indicates, for example, any violation of 
the allowed message sequence protocols, or specific 
configurations which are not allowed due to previously 
configured settings or configurations. 

8 TIMEOUT An expected message has not been received within the 
specific period after a previous event (message). 

9 CONFIG PAYLOAD 
MISMATCH 

The configuration part of a request does not fit to the 
payload part, for example, a mismatch of MSDU indices 
or MSDU lengths. 

10 LENGTH MISMATCH The content of any message body length or parameter 
set body length indicator field does not match to the 
actual message body length or parameter set body 
length. 
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11 INPUT BUFFER FULL Request rejected since the input buffer for incoming 
requests is full. The subsequent module needs some 
time to execute the previously stored requests.  

12 INTERNAL ERROR Internal error. 
13 Instance ID Mismatch The local instance ID is not like the decoded instance ID 

from MAC high. 
 

5.3.7 MAC SAP TX STATUS IND 
5.3.7.1 Message definition 
The MAC SAP TX Status Indication informs about the status of a previously requested 
transmission. Table 5-12 lists the contents of the overall message. 

Table 5-12. Overall Message of MAC SAP TX STATUS IND 

Field Type/ 
Length 

Value 
range 

Description 32-bit 
words 

message type ID U16 0x5001 Message type identifier 2xU32 
reference ID U16  See Section 5.3.1. It is filled with 

the reference ID of the 
corresponding MAC SAP TX 
CONFIG REQ. 

instance ID U8  See Section 5.3.1. 
message body 
length 

U24  message body length in bytes 
= MAC TX status (parameter  
   set body length) + 4 + 8 + 8   

reserved U16  See Section 5.3.2 2xU32 
 timestamp U32  See Section 5.3.2 

number of sub-
messages 

U8 1 
 

See Section 5.3.2. For the 
application framework, only one 
parameter set is defined for this 
message, which is mandatory. 

reserved U8  Filled with value 0 
For number of sub-messages (in MAC SAP TX STATUS IND) 
 sub-message type 

(parameters set) 
U8 0 Sub-message type of MAC SAP TX 

STATUS IND 
0: MAC TX status (mandatory) 

U32 

 parameter set ID 
(parameter set 
version) 

U8 0 0: For 802.11 Application 
Framework 

 parameter set 
body length 

U16 1 parameter set body length in 
bytes 

 MSDU 
transmission 
status 

U8 {0,1} 0: MSDU successfully transmitted 
1: MSDU discarded (retry limit 
reached) 
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5.3.8 MAC SAP RX CONFIG IND 
5.3.8.1 Overall Message 
MAC SAP RX Config Indication informs about a received packet. Table 5-13 lists the 
contents of the overall message. Four parameter sets are defined which specify the 
MSDU and MHY parameters, the status of the retry flag and the status of all MAC RX 
modules. 

Table 5-13. Overall message of MAC SAP RX CONFIG IND 

Field Type/ 
Length 

Value 
range 

Description 32-bit 
words 

message type ID U16 0x5181 Message type identifier 2xU32 
reference ID U16  See Section 5.3.1 
instance ID U8  See Section 5.3.1 
message body 
length 

U24  message body length in bytes 
= MSDU RX parameters 
(parameter set body length) + 4 
+ PHY RX parameters (parameter 
set body length) + 4 + RX Status 
(parameter set body  
   length) + 4 + 8 + 8   

reserved U16  See Section 5.3.2 2xU32 
 timestamp U32  See Section 5.3.2 

number of sub-
messages 

U8 4 See Section 5.3.2. In the 
application framework, a MAC 
SAP RX CONFIG REQ contains 
the following parameter sets 
(mandatory) for a single MSDU: 
• MSDU RX parameters  
• PHY RX parameters  
• RX status  
• Additional MSDU RX 

parameters 
reserved U8  Filled with value 0 
For number of sub-messages (in MAC SAP RX CONFIG IND) 
 sub-message 

type 
(parameters set) 

U8 {0…3} Sub-message type of MAC SAP 
RX CONFIG IND: 
0: MSDU RX parameters 
1: PHY RX parameters  
2: RX Status  
3: Additional MSDU RX 
parameters  

U32 

 parameter set ID 
(parameter set 
version) 

U8 0 0: In 802.11 Application 
Framework 

 parameter set 
body length 

U16  parameter set body length in 
bytes (without fields of sub-
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message type, parameter set ID, 
or parameter set body length) 

 parameter set 
body 

<parameter 
set body 
length> 

 Contents the specific sub-
message according to the 
selected parameter set. 

 

5.3.8.2 Parameter Sets 
5.3.8.2.1 MSDU RX Parameters 
Table 5-14 presents the contents of the MSDU RX parameters sub-message. 

Table 5-14. Sub-message contents of MSDU RX parameters 

Field Type/ 
Length 

(Sup-
ported) 
Value 
range 

Description 32-bit 
words 

Sub-message/parameter set of MAC SAP RX CONFIG IND 
 sub-message type 

(parameters set) 
U8 0 Sub-message type of MAC SAP 

RX CONFIG IND 
0: MSDU RX parameters 
1: PHY RX parameters 
2: RX Status 
3: Additional MSDU RX 
parameters 

U32 

 parameter set ID 
(parameter set 
version) 

U8 0 0: For 802.11 Application 
Framework 

 parameter set body 
length 

U16 41 Parameter set body length in 
bytes 

 parameter set body   Identical parameter set body as 
defined for MSDU TX parameters, 
see Section 5.3.4.2.1. 
Supported parameter value 
ranges might be extended, since 
RX is potentially not as restrictive 
as TX (sniffer mode, and so on).  
 
Note: No range value check is 
applied at MAC SAP RX side. 

 

 

5.3.8.2.2 PHY RX Parameters 
Table 5-15 presents the contents of the PHY RX parameters sub-message. 

Table 5-15. Sub-Message Contents of PHY RX Parameters 

Field Type/ 
Length 

(Sup-
ported) 
Value 
range 

Description 32-bit 
words 

Sub-message/parameter set of MAC SAP RX CONFIG IND 
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 sub-message type 
(parameters set) 

U8 1 Sub-message type of MAC SAP 
RX CONFIG IND 
0: MSDU RX parameters 
1: PHY RX parameters 
2: RX Status 
3: Additional MSDU RX 
parameters 

U32 

 parameter set ID 
(parameter set 
version) 

U8 0 0: In 802.11 Application 
Framework 

 parameter set body 
length 

U16 4 Parameter set body length in 
bytes 

 parameter set body   Identical parameter set body as 
defined for PHY TX parameters, 
see Section 5.3.4.2.2 
 
Note: No range value check 
applied at MAC SAP RX side. 

 

 

5.3.8.2.3 Additional MSDU RX Parameters 
This parameter set is used to provide additional MSDU RX configuration parameters at 
the MAC middle SAP RX side, which are not included in the (common) MSDU TX/RX 
parameters, but might be useful later. It serves also as an example for you to know how 
to provide additional parameters at the interface by means of an initial parameter set. 
Table 5-16 presents the contents of the additional MSDU RX parameters sub-message. 

Table 5-16. Sub-Message Contents of Additional MSDU RX Parameters 

Field Type/ 
Length 

(Sup-
ported) 
Value 
range 

Description 32bit 
words 

Sub-message/parameter set of MAC SAP RX CONFIG IND 
 sub-message type 

(parameters set) 
U8 3 Sub-message type of MAC SAP 

RX CONFIG IND 
0: MSDU RX parameters 
1: PHY RX parameters 
2: RX Status 
3: Additional MSDU RX 
parameters 

U32 

 parameter set ID 
(parameter set 
version) 

U8 0 0: In 802.11 Application 
Framework 

 parameter set body 
length 

U16 1 Parameter set body length in 
bytes 

 Retry flag U8 {0,1} Retransmission flag 
0: MSDU received after initial  
    transmission 
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1: MSDU received after re- 
    transmission 

 

5.3.8.2.4 MAC RX Status 
Table 5-17 presents the contents of the MAC RX status sub-message. 

Table 5-17. Sub-Message Contents of MAC RX Status 

Field Type/ 
Lengt
h 

(Sup-
ported) 
Value 
range 

Description 32bit 
words 

Sub-message/parameter set of MAC SAP RX CONFIG IND 
 sub-message type 

(parameters set) 
U8 2 Sub-message type of MAC SAP 

RX CONFIG IND 
0: MSDU RX parameters 
1: PHY RX parameters 
2: MAC RX Status 
3: Additional MSDU RX 
parameters 

U32 

 parameter set ID 
(parameter set 
version) 

U8 0 0: In 802.11 Application 
Framework 

 parameter set body 
length 

U16 7 Parameter set body length in 
bytes 

 MSDU duplicate 
detection status 

U8 0,…,2 0: Duplicate detection not 
executed  
1: Duplicate detection successfully 
passed 
2: Duplicate detected 

 

 MSDU 
defragmentation 
status 

U8 0,…,2 0: Defragmentation not executed 
1: Unfragmented MSDU 
successfully received 
2: Unsupported MSDU fragment 
received 

 

 MPDU Filtering 
status 

U8 0,…,2 0: MPDU Filtering not executed 
1: MPDU valid for further 
processing 
2: MPDU pass through for sniffer 
mode, which leads to extension 
for sniffer mode 

 

 MPDU disassembly 
status 

U8 0,…,3 0: Disassembly not executed 
1: Disassembly successful 
2: Disassembly done partially 
3: Disassembly not successful 

 

 MPDU length check 
status 

U8 0,…,3 0: MPDU length check not 
executed 
1: MPDU length check pass 
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2: MPDU length exceeds 
implemented buffer 
3: MPDU length not standard 
compliant 

 MPDU FCS check 
status 

U8 0,…,2 0: FCS check not executed 
1: FCS check pass 
2: FCS check fail 

 

 A-MPDU De-
Aggregation status 

U8 0,…,5 0: A-MPDU de-aggregation not 
executed 
1: A-MPDU de-aggregation 
successful 
2: MPDU length mismatch 
3: End of file (EOF) field check fail 
4: VHT delimiter signature 
comparison fail 
5: VHT delimiter CRC fail 

 

 

5.3.9 MAC SAP RX PAYLOAD IND 
5.3.9.1 Overall Message 
The MAC SAP RX Payload Indication provides the payload (MSDU) data associated with 
the MAC SAP RX Config Indication. Table 5-18 lists the contents of the overall 
message. The payload is contained in the MSDU RX payload parameter set. 

Table 5-18. Overall Message of MAC SAP RX Payload IND 

Field Type/ 
Length 

Value 
range 

Description 32bit 
words 

message type ID U16 0x5082 Message type identifier 2xU32 
reference ID U16  See Section 5.3.1 
instance ID U8  See Section 5.3.1 
message body 
length 

U24  message body length in bytes 
= MSDU RX payload (parameter 
set body length) + 4 + 8 + 8   

reserved U16  See Section 5.3.2 2xU32 
 timestamp U32  See Section 5.3.2 

number of sub-
messages 

U8 1 See Section 5.3.2. In the 
application framework, one MAC 
SAP RX PAYLOAD IND 
mandatorily contains one MSDU 
RX payload sub-message 
providing the payload for a single 
MSDU only. 

reserved U8  Filled with value zero, see Section 
5.3.2 

For number of sub-messages (in MAC SAP RX PAYLOAD IND) 
 sub-message 

type 
(parameters set) 

U8 0 Sub-message type defined for 
MAC SAP RX PAYLOAD IND  
0: MSDU RX payload (mandatory) 

U32 
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 parameter set ID 
(parameter set 
version) 

U8 0 0: In 802.11 Application 
Framework, the content type 
direct data  

 parameter set 
body length 

U16  Parameter set body length in 
bytes (without the fields sub-
message type, parameter set 
ID, and parameter set body 
length) 

 parameter set 
body 

<parameter 
set body 
length> 

 Contents the specific sub-
message according to the 
selected parameter set. 

 

 

5.3.9.2 Parameter Sets 
5.3.9.2.1 MSDU RX Payload 
The MSDU RX payload has the same definition of MSDU TX payload presented in Table 
5-9 of Section 5.3.5.2.1. 

5.4 MAC Middle SAP Modules 
5.4.1 MAC SAP TX Request Confirmation Handler 
As shown in Figure 5-1, the MAC SAP TX Request Confirmation Handler polls input 
queue for MAC SAP TX request message pairs and relies on and checks the specified 
message sequence (MAC SAP TX CONFIG REQ before MAC SAP TX PAYLOAD REQ). 
In addition, it decodes the received TX request messages and runs parameter and 
consistency checks. If checks fail, it generates a negative MAC SAP TX CNF messages. 
Otherwise, it prepares the MAC MSDU TX REQ and calls the MAC middle TX. Then, it 
waits for the MAC MSDU TX CNF from MAC Middle and generates the (final) MAC SAP 
TX CNF messages. Figure 5-5 shows the logical state machine for TX request and 
confirmation handler. The validation of incoming MAC SAP TX requests and the 
generation of parameter sets for MAC MSDU TX REQ are described in Section 5.4.1.1 
and Section 5.4.1.2, respectively. 
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Figure 5-5: MAC Middle SAP—Logical State Machine for TX Request and Confirmation Handling 

Any message received at the outer interface (from upper MAC) / 
discard message & send MAC SAP TX CNF(STATE VIOLATION) 

Idle
(Wait for new message input)

Parse / interpret CONFIG message
(& run [initial] checks on message content)

Store interpreted message content
(Extracted parameter values)

message received

== MAC SAP TX CONFIG REQ

Undefined message type ID / 
discard message & send MAC SAP TX CNF(UNKNOWN MESSAGE)

Any parsing errors / 
discard CONFIG REQ & send

MAC SAP TX CNF(<specific confirmation status>)

Wait for 2nd part of TX REQ

Everything ok

message received

Timeout / 
discard CONFIG REQ & send
MAC SAP TX CNF(TIMEOUT)

successful

Check that MAC SAP TX PAYLOAD REQ 
belongs to MAC SAP TX CONFIG REQ
(Check MSDU indices & MSDU length values)

done / 
send MAC MSDU TX REQ (to MAC middle)

Wait for MAC MSDU TX CNF
(from MAC middle)

TX confirmation status == Buffer full / 
send MAC SAP TX CNF(INPUT BUFFER FULL) for CONFIG REQ;
send MAC SAP TX CNF(INPUT BUFFER FULL) for PAYLOAD REQ

done / 
send MAC SAP TX CNF(SUCCESS) for CONFIG REQ;
send MAC SAP TX CNF(SUCCESS) for PAYLOAD REQ 

== MAC SAP TX CONFIG REQ / 
discard previous CONFIG REQ & send
MAC SAP TX CNF(STATE VIOLATION)

for previous CONFIG REQ

Check for invalid parameter values and 
value combinations

Apply complete check here.
Any failure or unsupported parameter 
value (combination) detected in the 
MAC SAP TX CONFIG REQ would 
automatically lead to rejection of a 
subsequent payload request
(since it lead to idle state and the 
subsequent message type check will 
pass through  MAC SAP TX CONFIG 
REQs) 

successful

Invalid parameter value or combination found / 
discard CONFIG REQ & send

MAC SAP TX CNF(RANGE VIOLATION)

Any MSDU index or length mismatch / 
discard CONFIG REQ & send MAC SAP TX CNF(CONFIG PAYLOAD MISMATCH);
discard PAYLOAD REQ & send MAC SAP TX CNF(CONFIG PAYLOAD MISMATCH)

Checks passed

Prepare MAC MSDU TX REQ
(MAC Middle specific internal format)

Parse payload message
(& apply message internal validation checks)

Store extracted parameters and data

== MAC SAP TX PAYLOAD REQ

Any parsing or validation error / 
discard CONFIG REQ & send MAC SAP TX CNF(STATE VIOLATION);

discard PAYLOAD REQ & send MAC SAP TX CNF(<specific confirmation status>)

== MAC SAP TX PAYLOAD REQ / 
discard message & send MAC SAP TX CNF(STATE VIOLATION)

Check message type ID
Defined message type ID

<> MAC SAP TX CONFIG REQ & <> MAC SAP TX PAYLOAD REQ / 
discard message & send MAC SAP TX CNF(MESSAGE NOT SUPPORTED)

Undefined message type ID / 
discard CONFIG REQ & send MAC SAP TX CNF(STATE VIOLATION);

discard latest message & send MAC SAP TX CNF(UNKNOWN MESSAGE)Check message type ID

Defined message type ID
<> MAC SAP TX CONFIG REQ & <> MAC SAP TX PAYLOAD REQ / 

discard CONFIG REQ & send MAC SAP TX CNF(STATE VIOLATION);
discard latest message & send MAC SAP TX CNF(MESSAGE NOT SUPPORTED)

Extract & Check TX confirmation status

Extract additional parameter
MSDU TX sequence number

MAC MSDU TX CNF received

Write parameter triple
into „TX REQ CNF Reference Queue“

(Reference sequence number, Reference ID,

MSDU length) 
Reference ID & MSDU length are taken from 

stored CONFIG REQ parameters

TX confirmation status == Success /
Reference sequence number = MSDU TX Sequence number
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5.4.1.1 Decode and Validation of Incoming MAC SAP TX Requests 
A decode and validation check are applied for every incoming MAC SAP TX request, 
that is, every incoming message pair MAC SAP TX CONFIG REQ and MAC SAP TX 
PAYLAOD REQ. The received 1D array in bytes of MAC SAP TX Configuration Request 
message is decoded to the following required subsets: General Message Header, SAP 
Sub Header, MSDU TX parameters and PHY TX parameters. 

In addition, the received 1D array in bytes of MAC SAP TX Payload Request message is 
decoded to the following required subsets: General Message Header, SAP Sub Header, 
and MSDU TX payload. After the decoding process of each sub-message, a validation 
check for all parameters is executed if they are supported or there is a mismatch. 
Whenever a validation check fails, the following actions are applied: 

1. The related message (or message pair) is discarded/rejected, see the state 
machine in Figure 5-5. 

2. MAC SAP TX CNF message is generated per discarded message with a related 
negative confirmation status as it is described in Table 5-11. 

3. A more detailed logging message is generated. 

Besides the common message validation checks presented in Table 5-11, additional 
checks are executed on MAC SAP TX CONFIG REQ on MSDU TX and PHY TX 
parameters as shown in Table 5-19. 

Table 5-19. Additional Checks on MAC SAP TX CONFIG REQ 

Validation Condition (Pass Criteria) (Negative) 
Confirmation Status if 
Check is Not Passed. 

Checks applied on specific parameters contained in MSDU TX parameters 
 source address (SA) is an individual address (that is, not a  

group address; the individual/group bit has to be zero), see 
section 9.2.4.3 of Part 11: Wireless LAN Medium Access 
Control (MAC) and Physical Layer (PHY) Specifications [1]. 

RANGE VIOLATION  

 basic service set identifier (BSSID) is an individual address 
and a locally administered address (that is, the universal/local bit 
is set to 1), see section 9.2.4.3.4 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1]. 

RANGE VIOLATION 

 transmitter address (TA) is an individual address if to DS is 1 
and from DS is 1. 
Note: This check is only applied when to DS = from DS = 1, 
since this is the only case where the transmitter address will be 
evaluated at the MAC Middle SAP. 

RANGE VIOLATION 

Checks applied on specific parameters contained in PHY TX parameters 
 bandwidth is within the supported range for the requested 

format, see Table 5-6. 
RANGE VIOLATION  

 MCS is within the range supported for the requested format 
and bandwidth combination, see Table 5-7. 

RANGE VIOLATION 
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5.4.1.2 Generation of Parameter Sets for MAC MSDU TX REQ 
5.4.1.2.1 Functional Description 
It gets the validated parameter values decoded from the received MAC SAP TX REQ 
pair (MAC SAP TX CONFIG REQ and MAC SAP TX Payload REQ) and sets the 
corresponding parameters in the MAC MSDU TX REQ to the extracted values. It gets 
the MSDU data extracted from MAC SAP TX PAYLOAD REQ  MSDU TX Payload  
MSDU data. Then, it provides the payload data in the MAC internal format as it is 
required for the MAC MSDU TX REQ, see Figure 5-1.  

In addition, it determines receiver address (RA) and transmitter address (TA) from the 
destination address (DA), source address (SA), and BSSID based on the to DS and from 
DS settings. The mapping for data frames is shown in Section 9.3.2.1 of Part 11: 
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications 
[1] (Table 9-26). The mapping for management frames is defined in Section 9.3.3.2 of 
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1] as follows: RA = DA and TA = SA (independent on to DS and from 
DS). 

The inputs of parameter sets generation of MAC MSDU TX request module are as 
follows: 

• MAC SAP TX configuration request including MSDU TX Parameters and PHY TX 
Parameters. 

• MAC SAP TX payload request 
The outputs of parameter sets generation of MAC MSDU TX request module are as 
follows:  

• MAC TX request including MPDU configuration and TX vector. 
• MSDU Data: Payload to be transferred to the target MAC TX. 

5.4.1.3 Generation of MAC MSDU TX Confirmation 
A MAC SAP TX CNF message is generated for each message received at the outer 
MAC Middle SAP TX interface. The confirmation message can be one of the following: 

• Positive confirmation in normal operation case: When both parts of a MAC SAP 
TX request, that is, the MAC SAP TX CONFIG REQ and the corresponding MAC 
SAP TX PAYLOAD REQ, have been validated based on the following criteria: 

o Successfully received in the right order 
o Successfully decoded 
o Checked to be valid6  

                                            
6 This includes the check of all received parameter values to be in the supported range, parameter value 
combinations to be supported, and that MAC SAP TX CONFIG REQ and MAC SAP TX PAYLOAD REQ 
matches.  
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o Successfully transferred from the MAC Middle to MAC low through the 
Host-to FPGA interface. In this case 2 positive confirm messages will be 
generated, one for the MAC SAP TX CONFIG REQ and one for the MAC 
SAP TX PAYLOAD REQ. 

• Negative confirmation in any of the following error cases: 
• The reception of any message at the outer (TX) SAP interface during the 

time period between a successful reception of a complete (and valid) MAC 
SAP TX request and the generation (transmission) of the corresponding 
MAC SAP TX CNF. 

• When an error occurs during parsing/interpreting the received message, 
for example, unknown message type ID, unsupported parameter ranges, 
and so on. 

• When a MAC SAP TX PAYLOAD REQ is received, but no corresponding 
MAC SAP TX CONFIG REQ has been received directly before. 

• When a MAC SAP TX CONFIG REQ is received directly after another MAC 
SAP TX CONFIG REQ instead of the expected MAC SAP TX PAYLOAD 
REQ. In this case, a negative confirm message is generated for the 
previous MAC SAP TX CONFIG REQ. The new MAC SAP TX CONFIG 
REQ is accepted and the module continues waiting for the MAC SAP TX 
PAYLOAD REQ. 

• When any of the received parameter values or value combinations are not 
supported by the application framework. 

• When the related MAC internal TX request could not be transferred to the 
MAC low on the FPGA due to full DMA buffer state. 

5.4.1.4 Write TX Request Reference Parameters to Queue 
If the MAC MSDU TX request derived from both parts of a MAC SAP TX request has 
been successfully transferred to FPGA, the corresponding reference ID and MSDU 
length are stored in a reference queue as shown in Figure 5-1. They will be used in the 
Generate MAC SAP TX status indication module.  

5.4.2 Generate MAC SAP TX Status Indication 
5.4.2.1 Functional Description 
It receives the MAC MSDU TX End IND from MAC Middle TX and reads out the oldest 
element from TX REQ CNF Reference Queue to determine the reference ID for the 
MAC SAP TX STATUS IND. It generates the MAC SAP STATUS IND. Then, it calls the 
transport layer function(s) to send the generated indication message to MAC High 
Abstraction. The logical state machine of MAC SAP TX Status IND is presented in 
Figure 5-6.  

It is worth mentioning that if a valid MAC MSDU TX end indication has been read from 
MAC middle, the reference queue of TX request confirmation should already have 
elements. Based on that, an element is read from the reference queue of TX request 
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confirmation to get the reference ID. A MAC SAP TX STATUS IND will be issued when 
a MAC SAP TX request is completed, whether successfully or not, at MAC level. The 
message includes the instance ID, given from the station configuration, reference ID, 
and MSDU transmission status. After the encoding process of MAC SAP TX STATUS 
IND sub-messages, it is written to the corresponding UDP port. 

 

 
Figure 5-6: MAC Middle SAP—Logical State Machine for Generation of MAC SAP TX STATUS IND 

5.4.2.1.1 Inputs 
The input interface of this module has the following items: 

• FPGA interface: Interface to the device's FPGA handle. 
• TX request confirmation reference queue: Queue reference of TX request 

confirmation that stores clusters of two elements (reference ID and MSDU 
length). 

• Instance ID of station. 
• UDP connection: Reference to the UDP socket used to send the TX Status 

Indication message. 
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• UDP port: Reference to the UDP socket used to send the MAC SAP TX Status 
Indication. 

5.4.3 802.11 Generate MAC SAP RX Indication 
5.4.3.1 Functional Description 
It receives MAC MSDU RX IND from MAC Middle RX; then it generates the 
corresponding MAC Middle SAP RX indication pair (MAC SAP RX CONFIG IND and 
MAC SAP RX PAYLOAD IND). The generation process is a kind of mapping, where the 
MSDU RX indication message is mapped to the sub-messages of MAC SAP RX 
indication that has the following sub-messages: MSDU RX parameters, PHY RX 
parameters, Additional MSDU RX parameters, and MAC RX status. The payload is 
mapped to MAC SAP RX Payload indication message. In addition, the MSDU index is 
created. After the encoding process of MAC SAP RX STATUS IND sub-messages, it 
calls the transport layer function(s) to send the generated indication messages to MAC 
High RX Abstraction, where the messages are sent in the following order: first the MAC 
SAP RX CONFIG IND, and then the MAC SAP RX PAYLOAD IND. 

A MAC SAP RX indication is issued whenever an MSDU or MMPDU has been received 
and successfully processed at MAC level; no special checks have been applied at the 
MAC middle SAP. In normal mode, only MSDUs/MMPDUs successfully and completely 
processed will be indicated by the MAC RX to the MAC middle SAP. Figure 5-7 shows 
the module structure and program flow.  

 
Figure 5-7: Generate MAC SAP RX Indications—Module Structure and Program Flow 

5.4.3.2 Inputs 
The input interface of this module has the following items: 

• FPGA interface: Interface to the device's FPGA handle. 
• Queue reference to store statistical information about the payload (time stamp 

and size). 
• Queue reference to the UDP socket used to send the RX Indication messages 

(MAC SAP RX configuration indication and MAC SAP RX payload indication). 
• Instance ID of the corresponding station. 
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5.4.4 Example of Decode and Encode Messages 
The encoding and decoding process of messages between MAC high and MAC middle 
SAP has been described previously. The concept is the same. To show the process, the 
MAC SAP TX Configuration Request decoding and MAC SAP RX Configuration 
Indication encoding will be used as an example.  

5.4.4.1 Decode MAC SAP TX Configuration Request 
It decodes the given 1D array (in bytes) of MAC SAP TX Configuration Request 
message. An error message is reported if the value of one decoded parameter is not 
expected. Besides the decoding of the required subsets (General Message Header, 
SAP Sub Header, MSDU TX parameters and PHY TX parameters), the module checks 
the parameters of all sub-messages if they are supported or if there is mismatch as 
explained in Section 5.4.1.1.  

The process is summarized as follows: 

1. Decode the general message header, see Figure 5-3 and Section 5.3.4. 
a. Check the General Message Header. 

i. Report error if there is a mismatch in the body length (Length 
Mismatch). 

ii. Report error if the message ID is not expected (State Violation). 
2. Decode the SAP Sub Header, see Figure 5-3 and Section 5.3.4. 

a. Check the SAP Sub Header. 
i. Report error if the number of sub-messages is not like the expected 

value (Range Violation). 
ii. Report error if the confirmation mode derived from the message ID 

is not similar to the expected value of confirmation mode (Range 
Violation). 

3. Check the header of every sub-message. 
a. Report error if the number of sub-messages is not like the expected value 

(Range Violation). 
b. Report error if the body length is not similar to the expected value (Length 

mismatch). 
4. Decode the MSDU TX Parameters. 

a. Check every parameter and report an error if it is not supported or there is 
a mismatch. 

5. Decode the PHY TX Parameters. 
a. Check every parameter and report an error if it is not supported or there is 

a mismatch. 
6. Check if any sub-message is duplicated or missing and report the appropriate 

error. 
• Duplicated: Report error (Parameter (Set) Repetition) 
• Missing: Report error (Missing Parameter (Set)) 
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5.4.4.2 Encode MAC SAP RX Configuration Indication 
It encodes the MAC SAP RX Configuration Indication message to 1D array of bytes. 
From Section 5.3.8, the message has the following sub-messages (General Message 
Header, SAP Sub Header, MSDU RX Parameters, PHY RX Parameter, Additional MSDU 
RX Parameters, and MAC RX Status). The process is presented in Figure 5-8, where 
there are six nodes to encode each sub-message. 

 
Figure 5-8: Code Structure of MAC SAP RX Configuration Indication Message Encoder 

6 MAC Layer 
A high-level overview of the MAC is shown in Figure 6-1. It shows the top-level 
modules of MAC TX and MAC RX chains that are provided to get the supported MAC 
features presented in Section 2.2. In addition, it shows the MAC part that has been 
implemented in the host and the other part that has been implemented in the FPGA. 
The MAC components are classified as follows: 

• Upper MAC: The higher MAC functionalities are not implemented. However, 
several interfaces are provided by the Middle MAC to allow for the transmission 
and reception of packets. As it is described in Section 2.1, the user can use the 
High MAC stub provided by the host application or an external MAC 
implementation, where the external MAC implementation interfaces are 
conducted with the Middle MAC SAP directly. The interface is described in 
Chapter 5.  

• MAC Middle SAP: Provides the interface between the supported MAC middle 
functionalities and external upper MAC applications as described in Chapter 5.  

•  MAC TX: The top modules are partitioned based on the target into two sets: 
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o Host Module: The MSDU Sequence Number assignment is implemented 
in the host to assign a sequence number for each incoming 
MSDU/MMPDU.  

o FPGA Modules: The MAC TX chain includes the following main functions: 
MSDU Fragmentation, Frame Sequence Selection, MPDU Retransmission 
Control, Frame Sequence TX Control, MPDU Generation, and A-MPDU 
Aggregation. The functionalities of each node are presented in Section 6.3. 

• MAC RX: The top modules are partitioned based on the target into two sets: 
o Host Module: The Duplicate Detection module is implemented in the host 

to check whether the received MSDU/MMPDUU (Data or Management 
frame) is duplicated. 

o FPGA Modules: The MAC RX chain contains the following MAC RX 
functions: A-MPDU De-Aggregation, MPDU Disassembly and FCS Check, 
MPDU Filtering, and MSDU De-Fragmentation. The functionalities of each 
node are presented in Section 6.4. 

• DCF Control: This top-level module realizes the DCF described in Section 10.3 of 
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1]. The DCF functionalities are presented in Section 6.5.1. 

• Host / FPGA Communication: The ICP is used to transfer data from host to 
FPGA and vice versa. 
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Figure 6-1: MAC High Level Block Diagram 

6.1 MAC Interfaces 
The interface exposed by the MAC is described in Section 5.1.2. It is used by the 
Middle MAC SAP, which is described in Chapter 5. 

6.2 ICP Interface 
As discussed in Section Error! Reference source not found., the lower part of the 
MAC is implemented on the FPGA, and the middle MAC is implemented on the host. 
The ICP serves as the interface between the two. The general format of the protocol is 
described in Section 3.2. 
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6.2.1 FIFOs 
The following H2T and T2H FIFOs are used to transfer the requests and indications 
from host to FPGA or from FPGA to host: 

• H2T TX Data: Transfers MAC MSDU TX REQ from host to FPGA 
• T2H TX Feedback: Transfers MAC MSDU TX End IND from FPGA to host 
• T2H RX Data: Transfers MAC MSDU RX IND from FPGA to host 

6.2.2 Encoding and Decoding Functions 
The following messages are transferred through the ICP interface between the MAC 
middle implemented in the host and MAC low implemented in the FPGA: 

• MAC MSDU TX Request: Transferred from host to FPGA 
• MAC MSDU TX End Indication: Transferred from FPGA to host 
• MAC MSDU RX Indication: Transferred from FPGA to host 

For each message, an encoder and decoder have been implemented. The encoder 
converts the corresponding message from a cluster to 1D array of U8 while the decoder 
converts the given message in 1D array of U8 to the corresponding cluster. 

To show the concept, the encoders and decoders of MAC MSDU TX Request message 
and MAC MSDU RX Indication will be presented as an example. 

6.2.2.1 MAC MSDU TX Request Encoder and Decoder 
From Figure 6-1, the MAC MSDU TX Request message is encoded to 1D array of U8 in 
the host after MSDU sequence number assignment. The encoding process is as 
follows: 

1. Get the following message sub-clusters: MPDU configuration and TX vector. 
2. For MPDU configuration cluster, get the following three sub-clusters: frame 

control, header contents, and parameters. 
3. Convert each sub-message to 1D array of U8. There is a module for each sub-

message. The following considerations have been considered: 
• If the parameter is wider than one byte, it is transmitted in Little Endian 

Byte order (the lowest byte first while the highest byte last). 
• If the parameter is fixed point (FXP), it is converted to binary, and then to 

the proper number of bytes. 
• If only one binary parameter is available per sub-message, it is converted 

to one byte. 
• If the parameter is binary, it is collected with the other binary parameters 

in the same sub-message into one byte. 
• If the parameter is an enum value, it is mapped to U8. 
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Figure 6-2 shows the module components of the MAC MSDU TX request message 
encoder in the host. The decoder in the FPGA reverses the operation of the encoder in 
the host to get the MAC MSDU TX Request cluster. 

 
Figure 6-2: MAC MSDU TX Request Message Encoder in Host 

6.2.2.2 MAC MSDU RX Indication Encoder and Decoder 
From Figure 6-1, the MAC MSDU RX Indication message is encoded to 1D array of U8 
in the FPGA. The encoding process is as follows: 

1. Get the message sub-clusters: RX vector, RX status, and MPDU configuration. 
2. For MPDU configuration cluster, get the three sub-clusters: frame control, header 

contents, and parameters. 
3. Convert each sub-message to 1D array of U8 considering the described 

considerations presented above. Figure 6-3 shows the module components of 
the MAC MSDU RX Indication message encoder in the FPGA. The decoder in the 
host reverses the operation of the encoder in the FPGA to get the MAC MSDU 
RX Indication cluster. 

 
Figure 6-3: MAC MSDU RX Indication Message Encoder in FPGA. 
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6.3 MAC TX Modules 
6.3.1 MSDU Sequence Number Assignment 
This module assigns the sequence number as needed for the duplicate detection and 
recovery which is described in Section 10.3.2.11.2 of Part 11: Wireless LAN Medium 
Access Control (MAC) and Physical Layer (PHY) Specifications [1]. The incoming 
MSDU/MMPDU may be re-transmitted multiple times by the MPDU (Re-)Transmission 
Control function using the exact same sequence number. This module maintains a 
sequence number cache to ensure that successive MSDUs/MMPDUs for the same RA 
are not assigned the same sequence number. The following state machine shown in 
Figure 6-4 gives an overview of the MSDE sequence number assignment. 

 
Figure 6-4: State Machine of MSDU Sequence Number Assignment 

Inputs are as follows:  

• MAC MSDU TX REQ (MSDU data, MPDU configuration, TX vector) 
o Interpreted parameters: 

 MPDU configuration: RA 
• MAC MSDU TX CNF (TX confirmation status) 

o Not used for processing 
Outputs are as follows: 
 

• MAC MSDU TX REQ (MSDU data, MPDU configuration, TX vector) 
o Modified parameters: 

 MPDU configuration: sequence number 
• MAC MSDU TX CNF (TX confirmation status) 

o Forwarded upon reception without change 

6.3.2 MSDU Fragmentation 
MSDU fragmentation as described in Section 10.2.7 of Part 11: Wireless LAN Medium 
Access Control (MAC) and Physical Layer (PHY) Specifications [1] is not implemented. 
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Instead, the MSDU is passed unfragmented, that is, without modification. Hence, the 
following fixed parameters are set: 

• fragment number = 0 
• more fragments = false (0) 

The parameter MPDU frame body length is copied from MSDU length. 

Inputs are as follows: 

• MAC MSDU TX REQ (MSDU data, MPDU configuration, TX vector) 
o Interpreted parameters: 

 MSDU length 
• MAC MPDU TX End IND (TX status, number of transmission tries) 

o Not used for processing 

Outputs are as follows: 

• MAC MPDU TX REQ (MPDU data, MPDU configuration, TX vector) 
o Modified parameters: 

 MPDU frame body length 
 Fragment number 
 More fragments 

• MAC MSDU TX End IND (TX status, number of transmission tries) 
o Forwarded upon reception without change 

6.3.3 Frame Sequence Selection 
Frame Sequence selection is described in Section 10.3.6 and 10.3.5 of Part 11: Wireless 
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]. This 
module defines which frame sequence from the following frame sequences is used for 
the requested transmission: 

• {RTS | CTS | DATA | ACK} 
• {DATA | ACK} 
• {DATA} 

Furthermore, the module sets the TX Vector parameters PSDU length and (A-)MPDU 
length dependent on the MPDU frame body length and the frame type and subtype. 

The {RTS | CTS | DATA | ACK} sequence is used for packets which are longer than a 
certain threshold which is defined by the parameter dot11RTSThreshold. In this case, 
RTS and CTS control frames are sent before the actual data transmission.  

The {DATA | ACK} sequence is used if the dot11RTSThreshold is not reached. 

The {DATA} sequence is used instead of the sequences listed above if one of the 
following conditions is met: 

• Recipient address is a group address and to DS is false (0) 
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• type is Management and subtype is Action No Ack 

Retransmissions are not possible for this sequence because of the missing ACK 
transmission. 

Inputs are as follows: 

• MAC MPDU TX REQ (MPDU data, MPDU configuration, TX vector) 
o Specific parameters required for actual processing 

 MPDU configuration: Recipient address, MPDU frame body length, 
frame type, from DS, to DS 

o TX vector 
 format 

• MAC MPDU TX End IND (TX status, number of transmission tries) 
o Not used for processing 

Outputs are as follows: 

• MAC MPDU TX REQ (MPDU data, MPDU configuration, TX vector) 
o Modified parameters: 

 MPDU Configuration: frame sequence type, MPDU length 
 TX vector: PSDU length, (A-)MPDU length 

• MAC MPDU TX End IND (TX status, number of transmission tries) 
o Forwarded upon reception w/o change 

6.3.4 MPDU (Re-)Transmission Control 
This module handles recovery procedures as described in Section 10.3.4.4 of Part 11: 
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications 
[1]. It triggers an initial transmission and, if necessary, retransmissions until one of the 
retry limits is reached. It handles the retry counters (SRC, LRC, SSRC, SLRC) and sets 
the retry flag accordingly. In detail, the following tasks are performed: 

• It receives the MAC MPDU TX request from the Frame Sequence Selection 
module (upstream module) and stores a single incoming MPDU data and the 
associated MPDU configuration and TX vector in a memory (data is forwarded to 
replay buffer). 

• It generates the MAC MPDU TX end indication to signal (un)successful 
transmission of the MPDU to the Frame Sequence module (upstream module). 

• It generates the (re)transmission request MAC frame sequence TX request for 
the current MPDU to the Frame Sequence TX Control module (downstream 
module). 

• It receives and evaluates the Frame sequence TX end indication for the 
requested frame sequence transmission received from the Frame Sequence TX 
Control module (downstream module). 
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• It generates signals to increase or reset the contention window parameter, 
depending on the (un)successful transmission of an MPDU (contention window 
change request). This signal is consumed by the DCF control module. 

• It discards MPDU data if one of the retry limits is reached (dot11ShortRetryLimit, 
dot11LongRetryLimit). 

The inner state machine is shown in Figure 6-5. It maintains four retransmission 
counters with according increment and reset flags: 

• SRC: short (frame sequence) retransmission counter 
• LRC: long (frame sequence) retransmission counter 
• SSRC: (global) STA short retransmission counter (for contention window 

handling) 
• SLRC: (global) STA long retransmission counter (for contention window handling) 

It contains the following states: 

• Idle: wait for incoming indications. 
• Handle MPDU TX request: generate MAC MPDU TX request (retry: False) for 

initial transmission. 
• Handle short frame: increment short frame retransmission counters (increment 

SRC, increment SSRC for data frames). 
• Handle long frame: increment long frame retransmission counters (increment 

LRC, increment SLRC for data frames, reset SSRC). 
• Set contention window: reset contention window if retry limit was reached; 

otherwise increase contention window in case of data frames. 
• Retry or discard: generate MAC MPDU TX request (retry: True) if retry limit was 

not yet reached; otherwise generate MAC MPDU TX end indication (TX status: 
MPDU discarded), reset SRC, reset LRC and clear MPDU. 

• Frame sequence completed: generate MAC MPDU TX end indication (TX status: 
MPDU transmitted), reset counters, reset contention window, clear MPDU. 

• Error: this state is entered upon detecting an error state (for example, new MAC 
MPDU TX request was received before the previous one was completely 
handled), do not accept/generate further requests/indications or data. 
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Figure 6-5: State Machine of MPDU (Re-)Transmission 

Inputs are as follows: 

• MAC MPDU TX REQ (MPDU data, MPDU configuration, TX vector) 
o Interpreted parameters: 

 MPDU data 
 MPDU configuration: MPDU length, frame sequence type, frame 

type 
 TX vector 

• Frame SEQ TX End IND (Frame SEQ TX status) 
o Interpreted parameters: 

 Frame SEQ TX status (frame sequence completed, no CTS 
received, no ACK received) 

Outputs are as follows: 

• MAC Frame SEQ TX REQ (MPDU data, reset replay buffer, MPDU configuration, 
TX vector) 

o Modified parameters: 
 MPDU data 
 Reset replay buffer 
 MPDU Configuration: retry flag 
 TX vector 

• MAC MPDU TX End IND (TX status, number of transmission tries) 
o Whole primitive is generated here: 

 TX status (MPDU transmitted, MPDU discarded) 

 

Idle
Handle 

MPDU TX 
request

Handle 
short 
frame

Handle 
long frame

Set 
contention 

window

Retry or 
discard

Frame 
sequence 

completed

Error

MAC MPDU TX request

frame sequence TX end ind.
• no ACK received (short)
• no CTS received (long)

frame sequence TX end ind.
• no ACK received (long)

frame sequence TX end ind.
• frame sequence completed

Error cases:
• frame sequence TX end ind.

with no CTS received (short)
• frame sequence TX end ind.

with unknown status
• MAC MPDU TX request

with MPDU available = true
• frame sequence TX end ind.

together with
MAC MPDU TX request



LabVIEW Communications 802.11 Application Framework Manual | © National Instruments | 77 

 number of transmission tries 
• CW Change REQ (Continuous wave (CW) action) 

o Modified parameters (all parameters are generated here): 
 CW action: reset, increase CW 

6.3.5 Frame Sequence TX Control 
This module controls and requests the transmission of MAC frames. Packet 
transmissions are caused by one of the following scenarios shown in Figure 6-6: 

• As part of the requested TX frame sequence 
• As response to received MAC frames indicated by the MAC RX Event to TX IND 

In the first scenario, the sequence depends on the requested sequence type in the 
following ways: 

• In case of the {RTS | CTS | DATA | ACK} sequence, a RTS packet is generated 
first. The DATA (or Management) packet is only generated if a CTS packet was 
successfully received. The sequence is considered successful if an ACK packet 
was received successfully.  

• In case of the {DATA | ACK} sequence, a DATA (or Management) packet is 
generated. The sequence is considered successful if an ACK packet was 
received successfully. 

• In case of the {DATA} sequence, only a DATA (or Management) packet is 
generated. The sequence is always considered successful. However, the module 
waits for the MPDU generation to finish (indicated by a MAC frame TX end 
indication) before it generates a frame sequence TX end indication. 

In the second scenario, the module needs to react to MAC frames that are received 
either in idle mode or while waiting for a DCF opportunity. An RTS packet is 
acknowledged by sending a CTS packet. A DATA (or Management) packet is 
acknowledged by sending an ACK packet. Sending a response has priority over handling 
a requested TX frame sequence. 

The module sets the duration field according to the requested TX frame sequence. Also, 
it sets the TX vector parameters in one of the following ways: 

• Copies the TX vector from the incoming MAC Frame SEQ TX REQ for DATA (or 
Management) frame types. 

• Sets it to predefined static configurations for RTS, CTS and ACK frames. This 
configuration determines the subcarrier format and the MCS. The default 
configuration is 20 MHz, non-HT subcarrier format, and MCS 0. 

For determining the right time for starting transmission, it communicates with the DCF 
module. It generates a DCF TX opportunity request upon reception of a MAC frame 
sequence TX request from the MPDU (Re-)Transmission Control. The DCF module 
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produces indications for a DCF TX opportunity and a SIFS TX opportunity indication. 
Figure 6-7 shows the state machine of frame sequence TX control module. 

 
Figure 6-6: Overview on Frame Sequence TX Control 

 
Figure 6-7: State Machine of Frame Sequence TX Control 
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The inputs are as follows: 

• MAC Frame SEQ TX REQ (MPDU configuration, TX vector) 
o Interpreted parameters: all 

• MAC Frame TX End IND (no parameters) 
• MAC RX Event to TX IND (received MPDU parameters) 

o Interpreted parameters: all 
• DCF TX Opportunity IND (no parameters) 
• SIFS TX Opportunity IND (NAV busy, MAX TX bandwidth) 

o Interpreted parameters: all 
• RX Timeout Pulse (no parameters) 

The outputs are as follows: 

• MAC Frame TX REQ (MPDU configuration, TX vector) 
o Modified parameters: 

 MPDU configuration 
 TX vector 

• Frame SEQ TX End IND (Frame SEQ TX status)  
o Whole primitive is generated here 

• DCF TX Opportunity REQ (target TX bandwidth) 
o Whole primitive is generated here 

• RX Timeout Count REQ (timeout type) 
o Whole primitive is generated here 

• MAC Frame TX Start IND (no parameters) 
o Whole primitive is generated here 

6.3.6 MPDU Generation 
This function assembles the MAC frame composed of MAC header, frame body and 
FCS field. The existence of fields depends on the MPDU configuration, for example, on 
frame type and subtype. The MPDU structure is discussed in Section 2.2.2. 

Only the following frame types are handled: 

• Control Frames: RTS, CTS, ACK (other Control frames are handled similar to ACK) 
• Data Frames: no restrictions 
• Management Frames: the address 3 field for management frames does always 

use the BSSID. Special cases described in 9.3.3.2 Part 11: Wireless LAN Medium 
Access Control (MAC) and Physical Layer (PHY) Specifications [1] are not 
handled. 
Note: BSSID is valid in most cases 

The block diagram is shown in Figure 6-8. The MAC Frame Header Generator generates 
the MAC header based on the parameters provided in the MAC Frame TX REQ. When 
the header was completely generated, the state machine creates a Frame Body request 
which reads the frame body from the replay buffer. The FCS Add submodule completes 
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the MPDU by adding the FCS field after MAC header and MPDU frame body. The 
MPDU Aggregation request is generated for the A-MPDU Aggregation module 
(downstream module) and a MAC Frame TX End indication is generated for the Frame 
Sequence TX Control module (upstream module). 

The block diagram of the MAC Frame Header Generator is shown in Figure 6-9. It 
contains a state machine which sends trigger signals to the Field Generator 
submodules. They generate the content of the different fields and send a done flag as 
soon as the field was completely generated. Upon receiving this flag, the state machine 
transitions to the next state. When all fields are generated, it generates a done flag 
which is consumed by the state machine of the MPDU Generation module. 

 
Figure 6-8: Block Diagram of MPDU Generation 

 
Figure 6-9: Block Diagram of MAC Frame Header Generator 

The inputs are as follows: 

• MAC Frame TX REQ (MPDU data, MPDU configuration, TX vector) 
o Interpreted parameters: 

 MPDU data 
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 MPDU configuration: all elements 

The outputs are as follows: 

• MPDU Aggregation REQ (MPDU, MPDU configuration, TX vector) 
o Modified parameters: 

 MPDU 
• MAC Frame TX End IND (no parameters) 

6.3.7 A-MPDU Aggregation 
For VHT frame formats, this module performs A-MPDU aggregation as described in 
Section 9.7 of Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer 
(PHY) Specifications [1]. The general A-MPDU format is shown in Figure 6-10. The A-
MPDU subframe format is presented in Figure 6-11.  Note that the implementation only 
supports a single MPDU (n=1). 

 
Figure 6-10: A-MPDU Format (Figure 9-741 in [1]) 

 

Figure 6-11: A-MPDU Subframe Format (Figure 9-743 in Part 11: Wireless LAN Medium Access Control (MAC) 
and Physical Layer (PHY) Specifications [1]) 

Overall, the following steps are executed when aggregating an A-MPDU: 

1. MPDU delimiter generation 
a. Field computation 
b. CRC computation 
c. Delimiter assembly 

2. Insertion of the MPDU 
3. Padding generation (for the single MPDU subframe) 
4. EOF padding generation (EOF Padding Subframes and EOF Padding Octets) 

For non-HT frame format, the MPDU is passed without modification. Figure 6-12 gives 
an overview of the A-MPDU aggregation state machine. 



82 | ni.com | LabVIEW Communications 802.11 Application Framework Manual 

 
Figure 6-12: A-MPDU Aggregation State Machine 
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The inputs are as follows: 

• MPDU Aggregation REQ (MPDU, MPDU configuration, TX vector) 
o Interpreted parameters: 

 TX vector: format, (A-)MPDU length, PSDU length 
 MPDU configuration: MPDU length 

The outputs are as follows: 

• PHY PSDU TX REQ (PSDU, TX vector) 
o Modified parameters: PSDU 

6.4 MAC RX Modules 
6.4.1 A-MPDU De-Aggregation 
This module reverses the A-MPDU Aggregation which is described in Section 9.7 of 
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1]. Hence, it is the counterpart of the A-MPDU Aggregation module 
described in Section 6.3.7. In the given implementation, only single MPDU (one MPDU 
per A-MPDU) are supported. 

If the format is VHT, the following steps are performed: 

1. Extract and decode the VHT single MPDU delimiter from the PSDU as defined in 
Figure 9-744 of Part 11: Wireless LAN Medium Access Control (MAC) and 
Physical Layer (PHY) Specifications [1]. 

2. Error Check: The A-MPDU is not been correctly received if: 
a. CRC check fails (for the CRC contained in the MPDU delimiter): 
b. EOF = 0 (indicates this is not a VHT single MPDU) 

Note: A-MDPUs containing more than 1 MPDU subframe are discarded. 
c. Delimiter signature is incorrect (Delimiter Field Value != 0x4E). 
d. MPDU length checks fail. 

3. Remove delimiter from A-MDPU. 
4. Remove padding from the A-MPDU. 

Non-HT MPDUs are passed without modification. 

The inputs are as follows: 

• PHY PSDU RX IND (PSDU, RX vector) 
o Interpreted parameters: 

 PSDU 
 RX vector: PSDU length, format 

The outputs are as follows: 

• MAC MPDU FRAME RX IND (RX vector, RX status, MPDU, MPDU configuration) 
o Modified parameters: 

 MPDU  
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 RX status: A-MPDU De-Aggregation status  
 MPDU configuration: MPDU length 

The A-MPDU De-Aggregation status enumeration has the following elements: 

• A-MPDU De-Aggregation successful 
• VHT delimiter CRC fail 
• VHT delimiter signature comparison fail 
• EOF field check fail 
• MPDU length mismatch 
• PSDU length mismatch 
• A-MPDU De-Aggregation not executed (Default value) 

6.4.2 MPDU Disassembly & FCS Check 
This module extracts the MAC header fields and the MAC frame body as described in 
Section 9.2 and Section 9.3 of Part 11: Wireless LAN Medium Access Control (MAC) 
and Physical Layer (PHY) Specifications [1]. Hence, it is the counterpart of the MPDU 
Generation module as described in Section 6.3.6. The block diagram is shown in Figure 
6-13. 

 
Figure 6-13: Block Diagram of MPDU Disassembly and FCS Check 

If a valid MAC MPDU FRAME RX indication was received and if the A-MPDU 
Disassembly was successful, the submodule performs the following tasks: 

• FCS Check 
o Extract the frame control field 
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o Calculate the FCS value and compare it to the extracted FCS field 
o Set MPDU FCS Check Status accordingly 
o Forward all other MPDU fields to the MAC Frame Header Disassembly 

• MAC Frame Header Disassembly 
o Extract the Frame Control field 
o Dynamically detect the MAC header field allocation dependent on the 

Frame Control field (frame type and subtype; to DS, from DS and 
+HTC/Order fields) 

o Extract the other MAC Header fields; map the address fields (for example, 
Address 1 maps to the Transmitter address) 

o Extract the MAC frame body and forward it to the MPDU Frame Body 
buffer 

o Perform length checks: 
 Length check while extracting each field: Check if the currently 

extracted field is fully contained in the MPDU. 
 Maximum length check: Check if the extracted MPDU frame body 

does not exceed a maximum length which is mandated by the 
chosen implementation (MPDU frame body buffer = 4,096 bytes). 

o Set MPDU Length Check Status and MPDU Disassembly Status 
depending on the length checks 

• MPDU Disassembly + FCS Check State Machine 
o Store an incoming valid MAC MPDU FRAME RX request 
o Wait for the FCS Check submodule to provide its status 
o Wait for the MPDU Disassembly submodule to provide its status 
o Generate the MAC MPDU RX indication (modified parameters are listed 

below) 
o Create a read request to the MPDU Frame body buffer, if the FCS check 

passed and the MPDU frame body could be extracted completely 
• MPDU Frame Body Buffer 

o Store the extracted frame body and write it to the output on request 

The module extracts the MPDU frame body, sets the corresponding length in 
parameters:MPDU frame body length and generates the following MPDU 
configuration parameters: 

• Frame control—information extracted from the frame control field is as follows: 
Protocol version, type, subtype, to DS, from DS, more fragments, retry, power 
management, more data, protected frame, HTC / order 

• Header contents—information extracted from the other MAC header fields is as 
follows:  Duration, source address, destination address, basic service set 
identifier, recipient address, transmitter address, sequence number, fragment 
number, QoS control, HT control 
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If the header content could not be extracted, the corresponding parameter is set to a 
default value. 

The module generates the following status codes: 

• RX status:MPDU FPGA check status determines if the FCS check was 
successful. Only if this is the case, de-aggregation and length check are 
executed. 

• RX status:MPDU length check status informs about the result of the length 
check. 

• RX status:MPDU de-aggregation status determines if the header could be de-
aggregated completely, partially, or not at all. If the status is Disassembly 
successful, all header fields were extracted completely. If the status is 
Disassembly done partially, only the fields duration and recipient 
address were extracted. These fields are required for the DCF control. If the 
status is Disassembly not successful or Disassembly not executed, 
no fields were extracted at all. 

The module does not filter (valid) MPDUs based on their MAC header content, except 
for unsupported control frame types which are only partially disassembled. Filtering is 
implemented in the MPDU Filtering module. 

This module forwards all data and management frame subtypes even though the 
respective subtype may not be supported in the transmitter. 

The interpreted parameters of the MAC MPDU FRAME RX IND (RX vector, RX status, 
MPDU, MPDU configuration) input are as follows: 

• MPDU      
• MPDU configuration: MPDU length 
• RX vector: format 
• RX status: A-MPDU De-Aggregation status  

The module performs Disassembly and FCS check only if A-MPDU De-Aggregation 
status is A-MPDU De-Aggregation successful. 

The outputs are as follows: 

• MAC MPDU RX IND (RX vector, RX status, MPDU data, MPDU configuration) 
o Modified parameters: 

 MPDU data 
 MPDU configuration  

• MPDU frame body length 
• All parameters contained in the MAC header (frame control, 

header contents) 
 RX status:  
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• MPDU FCS check status, MPDU length check status, MPDU 
disassembly status 

The MPDU FCS check status enumeration has the following values: 

• FCS check fail 
• FCS check pass 
• FCS check not executed (default value) 

The MPDU length check status enumeration has the following values: 

• MPDU length not standard compliant 
• MPDU length exceeds implemented buffer  
• MPDU length check pass 
• MPDU length check not executed (default value) 

The MPDU disassembly status enumeration has the following values: 

• Disassembly successful 
• Disassembly done partially 
• Disassembly not successful 
• Disassembly not executed (default value) 

6.4.3 MPDU Filtering 
This module evaluates the received MPDU configuration using three sets of criteria and 
generates the following corresponding three indications for three downstream 
functions: DCF control, Frame Sequence TX control and MAC middle SAP (through 
MSDU De-Fragmentation). Details about forwarding conditions and the contained 
information are given in Table 6-1. The block diagram of the module is shown in Figure 
6-14. 

Table 6-1: Indications Generated by MPDU Filtering Module 

Indication Downstream 
Module 

Forwarding 
Condition 

Contained Information 

MPDU Filtering 
for MAC MPDU 
RX Event IND 

DCF control 
(updates the NAV 
or counts EIFS) 
 

All received MPDUs, 
regardless of their 
type (also with FCS 
check status == fail). 

• FCS check passed 
(disassembly at least 
partially successful) 

• Update NAV (recipient 
address matches STA 
address) 

• Duration 
MPDU Filtering 
for generation of 
MAC RX Event 
to TX IND 

Frame Sequence 
TX control 

All received MPDUs, 
regardless of their 
type (also with FCS 
check status == fail) 

• Address match (RA 
address matches STA 
address and response 
required) 

• MPDU broken 
(disassembly failed or 
not executed)  
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• Parameters: duration, 
frame type, frame 
subtype, transmitted 
address 

MPDU Filtering 
for MAC MPDU 
RX IND 
Generation 

MAC middle SAP 
(through MSDU 
Defragmentation) 

Only successfully 
received MPDUs of 
type Data (subtype 
Data) or Type 
Management 

Same as MAC MPDU RX IND 
with MPDU Filtering status 
updated 

 
Figure 6-14: Block Diagram of MPDU Filtering 

The interpreted parameters of the MAC MPDU RX IND (MPDU data, MPDU 
configuration, RX status, RX vector) are as follows: 

• MPDU data 
• MPDU configuration: MPDU frame body length, recipient address, duration 
• RX status: MPDU disassembly status  

The outputs are as follows: 

• MAC MPDU RX Event IND (received MPDU event parameters) 
o Modified parameters: 

 received MPDU event parameters: all elements 
• MAC RX Event to TX IND (received MPDU parameters) 

o Modified parameters: 
 received MPDU parameters: all elements 

• MAC MDPU RX IND (MPDU data, MPDU configuration, RX status, RX vector) 
o Modified parameters: 
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 MPDU data 
 MPDU configuration: MPDU frame body length 
 RX status: MPDU Filtering status 

The MPDU Filtering status enumeration has the following values: 

• MPDU valid for further processing 
• MPDU pass through for sniffer mode 
• MPDU Filtering not executed (default value) 

6.4.4 MSDU De-Fragmentation 
Because real MSDU fragmentation and defragmentation is not supported by the 
application framework, the functionality of this module is limited to check for the 
following conditions: 

• fragment number is 0 
• more fragments is 0 (false) 

If these conditions are met, the received MPDU data is copied to the MSDU data. 
Otherwise the MSDU data remains empty. The module dependent status is set 
accordingly. 

The interpreted parameters of the MAC MPDU RX IND (MPDU data, MPDU 
configuration, RX status, RX vector) input are as follows: 

• MPDU data 
• MPDU configuration: fragment number, more fragments, MPDU frame body 

length  
• RX status: MPDU Filtering status 

The module performs the MSDU De-Fragmentation check only if MPDU Filtering 
status is MPDU valid for further processing. 

The modified parameters of the MAC MSDU RX IND (MSDU data, MPDU configuration, 
RX status, RX vector) output are as follows: 

• MSDU data 
• MPDU configuration: MSDU length 
• RX status: MSDU defragmentation status 

The MSDU defragmentation detection status enumeration has the following values: 

• Unfragmented MSDU successfully received 
• Unsupported MSDU fragment received 
• Defragmentation not executed (default value) 
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6.4.5 Duplicate Detection 
This module detects and removes duplicates by evaluating the sequence number7 and 
the retry flag8 based on Section 10.3.2.11.3 of Part 11: Wireless LAN Medium Access 
Control (MAC) and Physical Layer (PHY) Specifications [1]. This applies for Data and 
Management type frames. The check is initiated if the retry flag is true which indicates 
the reception of a retransmitted MPDU. The check is implemented by comparing the 
received sequence number to the sequence number of previously received frames with 
the same TA9, that is, received from the same transmitter station. 

To enable these kind of checks, different receiver caches are defined in the IEEE 802.11 
standard, see Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer 
(PHY) Specifications [1], table 10-4. The application framework implements the RC1 
cache (Not QoS Data) only. The other caches do not apply because the required 
features (for example, QoS traffic) are not supported by the framework. 

The cache stores the following tuple: <Address2, sequence number, fragment 
number>, where the fragment number is always 0. It keeps only the most recent entry 
per TA. The cache size can be configured by an input parameter. It is set to 10 by 
default. 

If the tuple exists in the cache already, a duplicate is detected and the MPDU data is 
cleared. Otherwise the tuple is added to the cache and the duplicate detection is 
assumed to be passed. In this case, the MSDU data is copied to the output. The 
module dependent status is set accordingly.  

The following frames are forwarded without duplicate detection and cache update: 

• Group addressed frames, that is, frames with an RA that is a group address. 
• ATIM management frames (frame type=00, subtype 1,001). 

The state machine of duplicate detection is shown in Figure 6-15. 

                                            
7 The sequence number is extracted from the sequence control field contained in the MAC header of the 
received frame. The extraction is done by MPDU Disassembly & FCS Check module. 
8 The retry flag is the Boolean representation of the retry bit extracted from the frame control field contained 
in the MAC header of the received frame. The extraction is done by MPDU Disassembly & FCS Check 
module. 
9 The transmitter address (TA) is extracted from the address 2 field contained in the MAC header of the 
received frame. The extraction is done by MPDU Disassembly & FCS Check module. 
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Figure 6-15: State Machine of Duplicate Detection 

The interpreted parameters of the MAC MSDU RX IND (MSDU data, MPDU 
configuration, RX status, RX vector) input are as follows: 

• MSDU data 
• MPDU configuration: retry flag, sequence number, fragment number, transmitter 

address 
• RX status: MSDU defragmentation status 

The module performs duplicate detection only if MSDU defragmentation is 
Unfragmented MSDU successfully received. 

The modified parameters of the MAC MSDU RX IND (MSDU data, MPDU configuration, 
RX status, RX vector) output are as follows: 

• MSDU data 
• MPDU configuration: MSDU length 
• RX status: MSDU duplicate detection status 

The MSDU duplicate detection status enumeration has the following values: 

• Duplicate detection successfully passed 
• Duplicate detected 
• Duplicate detection not executed (default value) 

6.5 DCF 
6.5.1 Functional Description 
The DCF mandated by the IEEE 802.11 standard [1] is carrier sense multiple access 
with collision avoidance (CSMA/CA). It requires that a STA sense the medium to 
determine if another STA is transmitting. Only if the medium is free for a certain time, it 
may start transmission, otherwise it must defer and wait until the end of the current 
transmission. After deferral, or prior to attempting to transmit again immediately after a 
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successful transmission, the STA shall select a random backoff interval and shall 
decrement the backoff interval counter while the medium is idle. 

The necessary procedures are handled by the DCF. It maintains the necessary counters 
and generates TX opportunities for the MAC TX. To determine if the channel is busy, it 
communicates with the PHY CCA, PHY RX and MAC RX module. 

Overall, it performs the following functions: 

• Handles IFS 
• Handles NAV 
• Handles RX Timeouts after transmissions (CTS, ACK) 
• Grants DCF opportunity on request 
• Monitors PHY channels for DCF grants with variable bandwidth (20 MHz, 40 

MHz, 80 MHz) 
• Grants SIFS opportunity after each successful received packet 

The basic operation includes the following steps. Steps 4 through 7 cover the backoff 
procedure: 

1. Wait for CCA idle or transmission end (TX active or RX primary channel busy). 
2. On successful frame reception, update NAV if required and report SIFS 

opportunity. 
3. Wait for NAV to expire. 
4. Wait for IFS to expire (IFS time based on RX / TX result from 1). 
5. Generate random backoff counter if current counter value = 0. 
6. Decrement backoff counter each slot until counter = 0. 
7. Primary channel idle, wait for DCF request . 
8. Check available bandwidth of request. If it is available, report for DCF TX 

opportunity. Otherwise, return to step 4 to trigger DIFS. 

The backoff procedure is invoked every time, even when no transmission is scheduled. 

The state machine is shown in Figure 6-16. The following list gives more information 
about the states and the corresponding state transitions: 

• Primary channel busy: 
o PHY RX has priority over all other steps; the state machine can jump from 

any state (like a reset condition) to the primary channel busy state. 
o In this state, the reason (energy of signal detection) is not known. 

• Frame Reception: 
o A PhyRxStart.ind clearly indicates the reason is signal detection. The 

Frame is processed in MAC and the timing relies on the received 
PhyRxEnd.ind and the MAC result as described in the receive procedure in 
chapter 21.3.20 of Part 11: Wireless LAN Medium Access Control (MAC) 
and Physical Layer (PHY) Specifications [1]. 
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o Regardless of the result, the same mechanism as for failed receptions is 
used to start IFS counting and eventually NAV updates. 

• SIFS waiting: In case of a successful frame, the IFS to be applied is DIFS. 
Additionally, SIFS is started. 

• NAV waiting: 
o All receive paths result in the NAV waiting state. Reason for this is that 

reception of frames can happen during a blocked medium by NAV. There 
could be remaining NAV after the reception of the frame. 

o Transition from Primary Channel busy: By default, if the primary channel is 
reported as idle again the current timestamp is used to trigger EIFS 
because of an unsuccessful reception. This applies for glitches of energy 
detection, L-SIG check failing or VHT-SIG-A check failing (but RXTIME 
known). The PHY is responsible for issuing CCA idle on primary channel at 
RXTIME or based on energy detection. 

o NAV waiting is followed by IFS waiting. DIFS or EIFS is chosen based on 
the previous events.  

• Backoff waiting: 
o Backoff counting is applied afterwards. This includes generation of a 

random backoff time and the decrement in each slot, where the medium 
is not busy. 

o The backoff counter CW is controlled from outside (MPDU (Re-
)Transmission control in MAC TX). It can be increased or reset. The DCF 
just controls the generation of the count of the slots and the initial value. 

• Primary channel free: 
o After backoff counting the channel is free to use.  
o Transition to Wait for PhyTXStart.req: a DCF TX request must be issued to 

get a DCF opportunity. It includes the desired bandwidth. It can be issued 
anytime. Just one TX request can be issued at a time. 

o Transition to IFS waiting: In parallel to the state machine, which monitors 
the primary channel, the secondary channels are monitored. If they are 
idle for point interframe space (PIFS), a DCF is granted. If one of the 
required channels is blocked, a new backoff procedure with DIFS is 
triggered. 

• Wait for PhyTXStart.req: 
o Once a DCF opportunity is granted, the DCF waits for the TX to get active. 

This is indicated by a valid PhyTXStart.req. 
• TX active: 

o If TX is active, the request gets cleared and the state machine waits for 
PhyTxEnd.ind, which corresponds to the completion of the frame on PHY 
level. 

o If a PhyTXEnd.ind is received and no timeout is pending, the state 
changes to NAV waiting. 

• Timeout waiting: 
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o There is the option to request an RX timeout (for CTS or ACK). This is 
applied after TX has finished the frame transmission. 

o RX timeout can be cancelled by RX frame reception. As the RX part of the 
state machine can be reached from any state. 

o If there is no reception during timeout, the timeout expires and causes a 
backoff procedure using EIFS.  

 
Figure 6-16: State Machine of DCF Control Module 
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6.5.2 DCF Implementation 

 
Figure 6-17: Block Diagram of DCF Implementation 

The block diagram of the DCF implementation is shown in Figure 6-17. The 
implementation places all counters in submodules. The state machine just collects busy 
or done signals and cares about the logical order of states as defined in the functional 
description above. 

All submodules containing timeout counters get an U32 timestamp, which is the 
runtime of the FPGA in 0.1 µs (10 MHz) unit. Two timestamp domains are used which 
are marked in Figure 6-17: 

• The original global timestamp aligns with the PHY timing. 
• The modified timestamp is calculated by global timestamp + TX advance. 

The shifting into the future allows the triggering of transmissions ahead of time. 
This ensures that the packet is provided to the RF at the correct point in time. 

6.5.2.1 Backoff Counter 
This module contains a random backoff value generator. It uses a linear feedback shift 
register (LFSR) of 11 bits. This results in non-zero random numbers in the range of 1 to 
2,047. The shift register is updated each clock cycle. 

The generator also takes care of the CW. It starts a aCWMin = 15 and increases to 
aCWMax = 1023 controlled by the CW change request. The CW is realized by marking a 
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part of the LFSR bits. Masking 4 bits results in a value range of 0 to 15. Masking 10 bits 
results in a value range of 0 to 1,023.  

The backoff counter will be decreased until reaching zero or being stopped. Once 
restarted (from stopped state), the backoff counter continues with the previous value. 
Upon reaching zero, a done pulse is generated. Start/stop commands are generated by 
the state machine depending on the CCA state. 

6.5.2.2 NAV 
A NAV update is triggered upon successful reception of a frame if the “update NAV” 
field was set in the captured MPDU RX event indication. The trigger signal is generated 
by the Primary Channel Monitor module.  

The update uses the duration value from the RX event indication and the timestamp 
given by the TX monitor. The elapsed time from TX monitor to current timestamp is 
deducted from the duration value. The resulting duration is loaded to the counter if it is 
bigger than the current value. 

The counter is decremented at each 10 MHz tick. A “busy” flag indicates that NAV is 
currently active. A “done” flag indicates that NAV waiting finished (the counter reached 
zero). 

6.5.2.3 IFS 
The IFS module contains multiple timeout counters for SIFS, DIFS and EIFS. IFS 
requests can have the following sources: 

• RX PHY (IFS request is provided by the primary channel monitor): Needs SIFS, 
DIFS and EIFS counter. 

• TX PHY (IFS request is provided by the TX monitor): Needs DIFS counter only. 
• DCF state machine: Needs DIFS counter only. 

DIFS counting for RX PHY and TX PHY uses the same counter because the events 
cannot occur at the same time. A start timestamp which is provided as part of the IFS 
request is used for initializing the counter. 

The DCF triggered DIFS uses a separate counter. Reason is a timing dependency at the 
end of NAV; if IFS finished before NAV+DIFS, this would disturb the state machine 
operation. The IFS request is generated either by the NAV module or by the DCF state 
machine. The modified timestamp is used for initializing the counter. 

The module generates the following flags: “SIFS expired”, “DIFS busy”, “EIFS busy”, 
any IFS busy”. 

6.5.2.4 Secondary Channel Monitor 
This module determines one of the following maximum available bandwidths: 20 MHz, 
40 MHz or 80 MHz. The basis is the PHY CCA indication which reports the current 
maximum channel bandwidth accessible. Secondary channels must not be busy for 
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PIFS to be accessible. There is a timer for both the secondary channel (20 MHz) and the 
secondary40 channel (40 MHz) which counts PIFS. It is set whenever the channel is 
reported busy by the PHY. Depending on the state of both timers, the maximum 
available bandwidth is derived. 

Another output “free bandwidth at last primary busy” captures the free bandwidth at 
the CCA(idle) to CCA(primary) transition. This information is needed when sending CTS 
at a higher bandwidth. The transmission of the CTS packet may be triggered only if the 
corresponding channel was free at the beginning of the RTS frame. 

6.5.2.5 TX Monitor 

 
Figure 6-18: State Machine of TX Monitor 

The TX monitor reports the status of the PHY TX and sets the “TX active” flag 
accordingly. It also handles RX timeout requests which are generated by the MAC TX. 
They can happen at any time but only one RX timeout can be handled at once. 

The state machine is shown in Figure 6-18: 

• Idle: the state machine waits for a MAC frame TX start indication. If it is received, 
the state changes to “TX active”. 

• TX active: the state machine waits for a PHY TX end indication. If no RX timeout 
request is pending, the state changes back to “Idle” and an IFS request (DIFS) is 
generated. If a RX timeout request is pending, the timeout counter is started and 
the state changes to “wait timeout”. 

• Wait timeout: the state machine waits for either RX timeout or a PHY RX start 
indication. In both cases the timeout counter is stopped and the state changes 
back to “idle”. Only if RX timeout occurred, an IFS request (DIFS) is generated. 

The module generates the following output signals: 

• TX active (true if state machine is in “TX active” or “wait timeout” state) 
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• Timeout expired 
• IFS request 

6.5.2.6 Primary Channel Monitor 

 
Figure 6-19: State Machine of Primary Channel Monitor 

This module monitors the state of the RX primary channel. The state machine is shown 
in Figure 6-19. 

• “Idle”: The state machine waits for a PHY CCA indication indicating the primary 
channel is busy.  

• “Energy or signal detection busy”: At this time, it is not known if the busy results 
from energy or signal detection. If the primary channel is indicated free again 
(unsuccessful frame reception or only energy detected) the state machine goes 
back to “Idle”. If a PhyRxStart indication is received (successful frame reception), 
the state changes to the next state. 

• “Wait for PHY RX end indication”: The state machine waits for a PhyRxEnd 
indication. If an error is indicated, the state machine changes back to “idle” and 
triggers EIFS. If no error is indicated, the state machine changes to the next 
state. 

• “Wait for MPDU RX event”: The state machine waits for a MPDU RX event. If it 
indicates a FCS error, the state machine triggers EIFS and changes back to idle. If 
no FCS error was indicated, the state machine changes back to idle and triggers 
the “successful frame detection” flag. 

The module generates the following output signals: 

• Primary channel busy (true in all states except for idle state) 
• Successful frame reception 
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• IFS request cluster, which has the following parameters: SIFS, DIFS, EIFS, and 
start time stamp. 

6.5.2.7 State Machine 

 
Figure 6-20: State Machine of DCF 

The state machine of the DCF is shown in Figure 6-20: 

• “Primary channel busy”: The state machine changes to this state as soon as 
primary channel busy is reported. The transition can happen from any other state 
(orange arrows). In this state, the backoff counter is stopped continuously as the 
previous state may have started the backoff counting. 
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• “NAV waiting”: As soon as the primary channel got idle, the state machine 
changes to this state. This is the beginning of the backoff procedure (NAV to IFS 
to Backoff). 

• The other states follow the functional description presented at the beginning of 
this section. The states rely on the busy signals of the modules described above. 

6.5.3 DCF Interfaces 
The inputs are as follows: 

• DCF TX opportunity request 
• MAV MPDU RX event indication 
• PhyRxStart.ind 

o Interpreted parameters: valid flag 
• PhyRxEnd.ind 

o Interpreted parameters: valid flag and Rx Error 
• contention window change request 
• PHY CCA indication 

o Interpreted parameters: valid flag, busy flag, channel list 
• RX timeout request 
• PHY TX end indication 

o Interpreted parameters: valid flag 
• MAC frame TX start indication 

The outputs are as follows: 

• SIFS TX opportunity indication 
• DCF TX opportunity indication 
• RX timeout pulse 

7 PHY Layer 
The PHY layer consists of a transmitter and a receiver. It is operating in the PHY clock 
domain of 250 MHz. The interfaces to MAC and RF are shown in Figure 7-1. The PHY 
SAP takes care of clock domain crossing to the MAC which is running in the MAC clock 
domain of 100 MHz. Target-scoped FIFOs are used to transfer the digital baseband 
signal to and from the RF which is running in the “Data Clock” clock domain which is 
depending on the hardware model. 

The PHY transmitter receives the PhyTxStart and the associated PSDU data from the 
MAC and generates the PHY frame as digital baseband signal which is passed to the 
RF. A PhyTxEnd indication is sent back to the MAC when the processing finished. 

The PHY receiver takes the digital baseband signal from the RF. If a packet is detected 
by the synchronization module, a PhyRxStart indication is sent to the MAC and the 
packet is decoded. If decoding was successful, the PSDU data and a PhyRxEnd 
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indication is sent to the MAC. If decoding was not successful, only a PhyRxEnd 
indication is sent to the MAC indicating unsuccessful reception. 

The PHY receiver also includes modules for power measurement, CCA, and AGC: 

• The power measurements module measures the input power on the unfiltered 
baseband signal. 64 input samples are averaged for one measurement. The 
measurements are input to the AGC module and are used for status display on 
the host. 

• The CCA module generates PHY CCA indications which indicate that the primary 
or the secondary channels are busy. The reason for primary channel busy can be 
either energy detected or signal detected. The energy detection information is 
generated by the CCA energy detection module, which performs measurements 
on the three filtered signals (primary, secondary, secondary40). The signal 
detected status is derived from the “packet detected” flag from the 
synchronization module and the “timing valid” flag from the RX PHY state 
machine. The indications are evaluated by the DCF module in the MAC. 

• The AGC module evaluates the power measurements and determines the RX 
gain needed for an optimal operation point of the PHY RF modules. If a gain 
change is required, it sends RX gain change commands to the register bus of the 
RF. Because the AGC is implemented completely on the FPGA, the AGC works 
on a per-packet basis. 

 
Figure 7-1: PHY Architecture 

Throughout this chapter, graphic elements are formatted as described in Table 
7-1Error! Reference source not found.. 

Element Usage 

TX PHY SAP

TX PHY

Digital base-
band signal

RX PHY SAP

RX PHY

Digital base-
band signal

PhyTxStart request
PSDU

PhyTxEnd indication

PhyRxStart indication
PhyRxEnd indication
PSDU
Phy CCA indication
Phy RX gain change indication

MAC

PHY

RF

TX to RF
FIFO

(target scoped)

RF to RX
FIFO

(target scoped)

Internal 
loopback FIFO 
(target scoped)

H2T RX 
baseband FIFO

T2H TX 
baseband FIFO

Register bus

RX gain change
command
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Blue rectangle (rounded edges) Code block or VI 
Blue rectangle Code entity 
Blue arrow Data path 
Yellow arrow Control path 
Red arrow Reference to element 

Table 7-1: Formatting Used for Graphics 

7.1 PHY SAP 
7.1.1 TX PHY SAP 
The following services related to transmission are provided by the PHY to the MAC. 

• PhyTxStart.req 
o This primitive is a request by the MAC sublayer to the PHY entity to start 

the transmission of a PSDU 
o Parameters: TXVECTOR (represents a list of parameters that the MAC 

sublayer provides to the local PHY entity to transmit a PSDU) 
o Corresponds to the PHY-TXSTART.request described in Section 8.3.5.5 of 

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer 
(PHY) Specifications [1]. 

• PhyTxEnd.ind 
o This primitive is an indication by the PHY entity to the MAC layer indicating 

the end of a transmission. 
o Parameters: “unsupported mode” (Boolean), “scrambler seed” 
o This indication is used instead of the request/response PHY-

TXEND.request/confirm described in Section 8.3.5.7 and 8.3.5.8 of Part 
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1]. 

7.1.2 RX PHY SAP 
The following services related to RX are provided by the PHY to the MAC. 

• PhyRxStart.ind / PHY PSDU RX IND 
o This primitive is an indication by the PHY to the local MAC entity that the 

PHY has received a valid start of a PPDU, including a valid PHY header 
o Parameters: RX vector (format, bandwidth, PSDU length, MCS, non-HT 

bandwidth (=20 MHz), dynamic bandwidth support (=False)) 
o Corresponds to the PHY-RXSTART.indication described in Section 8.3.5.13 

of Part 11: Wireless LAN Medium Access Control (MAC) and Physical 
Layer (PHY) Specifications [1]. 

• PhyRxEnd.ind 
o This primitive is an indication by the PHY to the local MAC entity that the 

PPDU currently being received is complete. 
o Parameters: RX vector (see above), RX error (Enum: "NoError", 

"CarrierLost", "FormatViolation", "UnsupportedRate", "Filtered") 
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o Corresponds to the PHY-RXEND.indication described in Section 8.3.5.14 
of Part 11: Wireless LAN Medium Access Control (MAC) and Physical 
Layer (PHY) Specifications [1]. 

• Phy CCA indication 
o This primitive is an indication by the PHY to the local MAC entity of the 

current state of the medium. 
o Parameters: busy (Boolean), channel list (Enum: “none”, “primary”, 

“secondary”, “secondary40”) 
o Corresponds to the PHY-CCA.indication described in Section 8.3.5.12 of 

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer 
(PHY) Specifications [1]. 

• Phy RX gain change indication 
o This primitive is an indication by the PHY to the local MAC indicating the 

current status of the automatic gain control (AGC) module. 
o Parameters: gain, state (Enum: “Idle”, “maximum gain”, “wait for 

measurement”, “gain set”, “gain locked”, “wait for channel clearance”) 
o Proprietary; does not have a correspondent in Part 11: Wireless LAN 

Medium Access Control (MAC) and Physical Layer (PHY) Specifications 
[1]. 

7.2 PHY RX 
The main function of the PHY receiver (PHY RX) is the decoding of the PHY frame. It 
also includes modules for power measurement, CCA and AGC. The PHY RX block 
diagram is shown in Figure 7-2: 

• The data source module selects the source for the receiver. Data can be taken 
from RF, from the TX baseband using internal loopback, or from the host or by 
using a H2T FIFO. The stream always has a sample rate of 80 MS/s for all 
sources. 

• The signal filter extracts the primary, secondary and secondary 40 MHz channel. 
The synchronization detects the packet start within the primary channel and 
compensates an estimated carrier frequency offset on the full bandwidth signal. 
In parallel, the CCA energy detection module calculates the received signal 
power and compares it against the configured CCA threshold.  

• The baseband samples are given to the RX I/Q Processing module, where the 
samples are transferred to the frequency domain. Then channel estimation, 
equalization, and phase tracking are done. The I/Q processing also contains the 
format detection module (non-HT, HT, VHT). 

• The constellation with field assignment information is provided to the RX Bit 
Processing module. Inside this block the modulation is reversed, the bits are 
deinterleaved, decoded using a Viterbi decoder and descrambled.  

• This bit stream is given to the RX PHY state machine which generates control 
information for the in-phase/quadrature (I/Q) processing and bit processing 
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modules. It also generates the PhyRxStart and PhyRxEnd indications. The state 
machine interprets the signal fields (L-SIG and VHT-SIG-A) to determine the 
number of OFDM symbols, the bandwidth, the MCS and the PSDU length. The 
PSDU, which can be MPDU or A-MPDU, is extracted from the bit stream and 
delivered to the MAC as unsigned bytes.  

Every module is designed to keep up with the data rate from the upstream module, so 
there is no need for throttle control inside the modules. The timing of the transfers is 
described in the following sections. 

 
Figure 7-2: RX PHY Block Diagram 

7.2.1 PHY RX AGC 
The AGC ensures that the operating point of the system keeps in an optimum range. 
Therefore, it can apply RX RF input gain values from 0 dB to 31.5 dB. The module is 
implemented as a simple state machine as shown in Figure 7-3.  

Note that the USRP and the FlexRIO targets have a wider gain range that is divided onto 
multiple gain stages. Both targets contain at least one stage whose gain range matches 
the AGC range. Timing wise the AGC is only capable of changing this one stage before 
the channel estimation requires a constant amplitude. The other gain stages are set to 
their maximum.  
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Figure 7-3: AGC State Machine 

In state Idle the AGC waits until it gets activated. It switches to state maximum gain 
and set the maximum possible gain value (31.5 dB) to make sure that very low powered 
incoming packets won’t be missed. The total gain is higher due to the setting of the 
other gain stages. When the measured baseband signal power on the primary channel 
exceeds a target level that can be configured from the host, the AGC waits for a second 
power measurement from the overall baseband signal in the wait for measurement 
state. This second value will be used to determine the applied gain based the 
configured target level. The finite-state machine (FSM) changes into the gain set state. 
It may be that some other signal than a PPDU triggered a gain change. If there is no 
packet detected after setting a gain value a timeout occurs and the FSM changes to 
wait for channel clearance state. The timeout is set to 16 µs, which is the preamble 
length of L-STF and L-LTF. All states except for the idle state transition to the gain 
locked state if a packet is detected by the synchronization to avoid any packet 
corruption by gain changes. This state is left when the packet processing is done. Due 
to the signal filtering and the power measurement the measured energy might still 
exceed the target level. The wait for channel clearance state therefore waits until the 
measured energy undercuts the level before setting the maximum gain value. 

The expected timing compared to the over-the-air (OTA) signal is shown in Figure 7-4. 
The gain for the arriving packet must be set within a few microseconds since the gain 
setting using the register bus is taking around 9 µs. The design provides 12 µs after the 
first sample of the packet until the second part of L-LTF which is used in RX IQ 
processing. The maximum gain is set at the earliest point in time to settle the gain 
within SIFS for the next packet.  
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Figure 7-4 AGC Timing 

7.2.2 PHY RX CCA 
The RX PHY is responsible for generating PHY CCA indications to the MAC based on 
signal detection and energy detection as defined in Section 21.3.18.5 in Part 11: 
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications 
[1]. The only missing feature is the detection of PPDU start in the secondary channels 
within aCCAMidTime. The overall block diagram of the CCA mechanism is shown in 
Figure 7-5. Details of the signal filter and the energy detection module are illustrated in 
Figure 7-6. 

 
Figure 7-5: CCA Block Diagram 
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Figure 7-6: CCA Energy Detection Block Diagram 

The sample from the RF are fed into a signal filter. The synchronization is responsible 
for the signal detection. This module separates the primary, the 20 MHz secondary, and 
the 40 MHz secondary channel. Each one is shifted to DC and low-pass filtered. The 
low-pass filtered primary channel is provided to the synchronization which is responsible 
for the CCA signal detection part. It reports the existence of a preamble within 
aCCATime. The signal detection gets deasserted when the synchronization is rearmed. 
This is triggered by the last sample received in RX IQ processing which is based on the 
last OFDM symbol index decoded from the received PPDU. 

The CCA Energy detection module detects any signal above a given CCA energy 
detection threshold. Based on the incoming samples of each channel x the signal power 
s is calculated over a window of 64 samples as described in Equation 7-1. The output of 
this calculation is updated after 64 samples arrive. The next step is the iterative 
calculation of the logarithm to the base of 10. The value of s shifts n times to the left 
until the most significant bit (MSB) contains a one. The number of shifts, n, and a look-
up table (LUT) of the six MSBs of the shifted value s’ are used to calculate the signal 
power p in logarithmic scale. This value represents the baseband signal power in dBFS. 

𝑠𝑠 = � 𝑥𝑥𝑖𝑖+𝑗𝑗𝑥𝑥𝑖𝑖+𝑗𝑗∗
64−1

𝑗𝑗=0

 

𝑠𝑠′ = 2𝑛𝑛 ∗ 𝑠𝑠 
𝑝𝑝 = log10(𝑠𝑠) = log10(𝑠𝑠′) + log10(2−𝑛𝑛) ≈ log10(𝑠𝑠′) − 3𝑛𝑛 

Equation 7-1: Signal Power Calculation 

Based on p, the RF input power r is calculated using the power calibration offset 
(configured from the host) and the RF gain (see Equation 7-2) provided by the AGC. 
Both values are given from the host. The analog gain value is subtracted from p 
because applying gain before ADC means that the RF input power is lower than the 
measured signal power. The power calibration offset is based on the calibration data of 
the device. It maps the baseband signal power at minimum gain to the corresponding 
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reference power level10 at the RF input port. This mapping is assumed to be linear at all 
gain levels. 

𝑟𝑟 = 𝑝𝑝 − gain + offset 

Equation 7-2: RF input Power Calculation 

The value of r is compared against the given CCA energy threshold. If this threshold is 
exceeded, a CCA indication is generated containing the affected channel.  

The information of signal and energy detection is combined in the CCA module. The 
energy detection information is forwarded by default. If necessary, this information is 
overwritten by signal detection (reported as primary channel busy) when activated. If 
signal detection is deasserted, there are two possible options as follows. The RX PHY 
state machine provides the information if the duration of the packet is known. 

• If the duration of the packet is known, the CCA indication reports idle to the 
MAC. This state is kept for 3 energy detection measurement to ensure that the 
filtering and power measurement modules are clear of remaining samples from 
the PPDU.  

• If the timing is not known, the CCA energy detection values are directly 
forwarded to the MAC. 

7.2.3 Synchronization 
The purpose of the synchronization module is to find the packet start in the continuous 
sample stream. The ideal position of the packet start for the implemented algorithm is 
in the center of the L-LTF field. This second half is treated as L-LTF-2 where the 
remaining 64 samples from L-LTF-1 are like a cyclic prefix in all the other following 
OFDM symbols.  

The block diagram of the synchronization unit is shown in Figure 7-7. 

The synchronization is fed from the data source with a sample rate of 80 MS/s. In the 
baseband clock domain of 250 MHz, approximately every third sample is valid. Each VI 
must use the enable chain to update only on valid samples.  

                                            
10 This reference power level corresponds to the power level of a continuous wave (CW) signal having an 
amplitude of -3 dBfs at the ADC input. 
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Figure 7-7: Synchronization Block Diagram 

The synchronization block is implemented in two parallel paths (refer to Figure 7-7) to 
minimize the latency on the data path. The upper path finds the packet start sample 
index and estimates the frequency offset based on the Schmidl and Cox algorithm [4] 
on the low pass filtered primary channel. These estimates are used by the lower path, 
which is the main unfiltered data path, to compensate frequency offset and generate 
the packet start pulse for downstream modules. 

For testing purposes, there is a bypass for the synchronization block where the packet 
start index can be given from the host. This path is not included in Figure 7-7. Use this 
bypass in combination with RX samples from the host or internal loopback to 
characterize the RX baseband without the impact of synchronization algorithms. 

As shown in Figure 7-7, the upper path of the synchronization block starts to calculate 
the cross correlation of the received signal x and one period of the L-STF time signal p 
(see Equation 7-3). Additionally, the result is divided by the received signal power. The 
signal strength of p is left out for simplifying the calculation on the FPGA. As a result, 
the magnitude of the cross-correlation results in 10 peaks during the 640 samples of L-
STF as shown in Figure 7-8 (X-Corr).  

𝑐𝑐𝑐𝑐(𝑛𝑛) =
∑ 𝑥𝑥(𝑛𝑛 − 𝑖𝑖) ∙ 𝑝𝑝∗(64 − 𝑖𝑖)63
𝑖𝑖=0

∑ |𝑥𝑥(𝑛𝑛 − 𝑖𝑖)|63
𝑖𝑖=0

  

 

Equation 7-3: Synchronization Cross-Correlation 
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Figure 7-8: Simplified Signal Charts of Synchronization 

Based on the magnitude of the cross correlation a peak search is performed. It 
compares the magnitude against a given threshold and reports a peak if a configured 
number of sample exceeds this threshold. A wrapping U16 counter, incremented for 
each valid sample, is used to represent the position within the continuous sample 
stream. The numeric range of 16 bits is sufficient to express a unique position within 
the preamble of the packet. The next module reports the number of consecutive peaks. 
The peaks caused by the L-STF appear each 64 samples. Given an allowed derivation 
the peak search identifies peaks which match the expected distance. It accounts for a 
possible wrap of the index counter. The output is the number of consecutive peaks and 
the last peak index from the module input. The Determine Packet Start module reports 
the packet start if the number of consecutive peaks exceeds 9.  

Note that it may be due to random noise processes that a peak is detected before the 
start of the packet leading to a total number of 11 peaks (reported as 10 consecutive 
peaks). In this case the packet start reported after 9 peaks is overwritten with the next 
peak as the last peak belongs to the L-STF. Further peak detections within the L-LTF 
field are very unlikely. 

There is a state machine which controls the generation of the CCA signal detection (see 
Figure 7-9). The MAC must be informed about a preamble within aCCATime (see Table 
21-27 of Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1]). This requires an indication ahead of the packet start. The existence 
of a preamble is reported to the MAC in case there are two consecutive peaks found. 
As this is not a fully safe decision there is a timeout started which count expire in the 
preamble candidate detected state and leads back to the initial search preamble state. 
Any additional consecutive peak resets this timeout. If a packet start was found the 
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state is switched to packet start detected. Because of the optimal additional peak 
mentioned above the same timeout mechanism is used to lock the sync afterwards. In 
the sync locked state the consecutive peak count is forced to zero to disable detection 
of further preambles. It requires the rearm trigger to enable the peak search again and 
to disable the signal detection signal. The rearm trigger is generated by the RX IQ 
processing on reception of the last sample of the packet. 

 
Figure 7-9: Synchronization State Machine 

In parallel to the computation of the packet start index there is the frequency offset 
estimation. It is based on autocorrelation as shown in Equation 7-4. The signal x is 
folded onto itself using a window up half L-STF length (320 samples). The ideal result is 
shown in Figure 7-8 as Auto Corr.  

𝑎𝑎(𝑛𝑛) = �𝑥𝑥(𝑛𝑛 − 𝑖𝑖) ∙ 𝑥𝑥∗(𝑛𝑛 − 𝑖𝑖 − 320)
319

𝑖𝑖=0

 

Equation 7-4: Synchronization Autocorrelation 

The frequency offset estimator module uses the autocorrelation result and the packet 
start index to pick the peak of the autocorrelation. The phase of the auto correlation 
value at the packet start index position directly translates the frequency offset as shown 
in Equation 7-5, where n is 320 samples from the autocorrelation. 

𝝋𝝋(𝒂𝒂(𝒑𝒑𝒂𝒂𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒔𝒔𝒑𝒑𝒂𝒂𝒔𝒔𝒑𝒑 𝒊𝒊𝒊𝒊𝒊𝒊𝒑𝒑𝒊𝒊)) =  𝟐𝟐𝟐𝟐𝒊𝒊
∆𝒇𝒇
𝒇𝒇𝒔𝒔

    

Equation 7-5: Synchronization frequency offset estimation 
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The frequency offset and the packet start index are captured in the lower chain upon a 
detection of a packet start. The estimated frequency offset is compensated by applying 
a digital frequency shift. The frequency estimate is used for all OFDM symbols of the 
entire packet. The Frame Alignment module generates the packet start trigger pulse at 
the captured start sample index. 

 
Figure 7-10: Synchronization Latency 

7.2.3.1 Synchronization Latency 
The latencies for the different modules in the Synchronization block are illustrated in 
Figure 7-10. The left part of the figure contains the modules of the sample index 
computation path. The latency of those modules totals 102 clock cycles. Given the 
sample rate of 80 MS/s at 250 MHz clock rate, this time is equivalent to about 32 
samples. Since the packet start index is located 160 samples after the last sample of L-
STF, the packet start index is calculated before the packet start signal must be asserted, 
and there is no effective delay. 

The latency of the main data path is shown in the right part of Figure 7-10. This latency 
increases the length of the RX processing path by 15 clock cycles.  

7.2.4 RX IQ Processing 
The receiver RX IQ Processing block purpose is to restore the transmitted I/Q 
constellation. The block diagram is shown in Figure 7-11. Details of data types, control 
information, and identifiers used in equations are presented in Table 7-2. 
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Figure 7-11: RX IQ Processing Block Diagram 

Module Identifier Output Data 
Type 

Output control 
information 

Synchronization — CFX 3.13 Packet Start 
Sample Timing 
Generation 

— Sample Timing 

Cyclic Prefix Removal — 
FFT R CFX 4.21 OFDM symbol index 
Demapper — Field Map 

Subcarrier Timing 
Channel Estimation Hest Subcarrier index 
Channel Equalization Yest CFX 2.14 Field Map 

Subcarrier Timing 
Pilot Phase Estimation Β FXP 1.14 — 
Phase Correction Xest CFX 2.14 Field Map 

Subcarrier Timing Format Detection — 
VHT-SIG-A2 Rotation — 

Table 7-2: RX IQ Processing Data Types and Control Information 

The Sample Timing Generation module gets samples from the Synchronization module 
along with the packet start index. It starts passing samples to downstream modules as 
soon as the packet start signal is asserted. It stops passing samples as soon as the last 
OFDM symbol is finished whose index is given by the RX PHY state machine. The 
control information is carried by the sample timing cluster, which contains the following 
elements: 

• OFDM symbol index 
• Sample index (within the OFDM symbol in the range of 0 to 319) 
• Packet start flag 
• OFDM symbol start flag 
• Valid flag 

The sample index is used by the Cyclic Prefix Removal module to invalidate the first 64 
samples of each OFDM symbol. 
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The next downstream module is the FFT, which is a wrapper for the Xilinx FFT core. It 
contains a 256-point FFT operation using a Radix 4, Burst I/O architecture. A toggling 
negation realizes the FFT shift to have the DC at the 128th output value. The FFT starts 
execution as soon as 256 samples are provided. During the execution, no samples are 
taken on the input. A FIFO is placed before the input to capture the samples that arrive 
in the meantime. On finishing execution, the 256 subcarriers are provided at the output 
consecutively. The OFDM symbol index from the incoming sample timing cluster is 
passed through this module, parallel to the data stream. The maximum gain of the FFT 
is 256 if the energy is limited to only one subcarrier. Therefore, the fixed point data type 
is extended by nine bits to capture this output dynamic range of the FFT module. The 
output of the FFT is divided by 256 to have the same scaling as on the input of the IFFT 
in the transmitter chain. The resulting fixed-point format is <4.21>. 

The Demapper block aligns two control information clusters with the data stream. The 
first cluster is the subcarrier timing cluster, which contains the following elements: 

• OFDM symbol index 
• Subcarrier index (0 to 255) 
• Frequency offset index (named k in equation 17-23 of Part 11: Wireless LAN 

Medium Access Control (MAC) and Physical Layer (PHY) Specifications  [1]; -128 
to 128) 

• OFDM symbol start flag 
• Valid flag 

The frequency offset index is generated based on the control information from the RX 
PHY state machine (refer to Section 7.2.7). The second control information cluster is the 
field map. This cluster is made up of Booleans, and each Boolean represents one field 
of the IEEE 802.11 packet structure, such as L-SIG, L-LTF, VHT-SIG-A, pilot subcarrier, 
or data subcarrier. Similar to a one-hot-code, only one of these Booleans is asserted for 
each sample. The packet structure is known to the Demapper module. Downstream 
modules can take this field map to filter for specific fields, such as the pilot subcarriers. 

The channel estimation is computed using the second L-LTF OFDM symbol for 802.11a 
and VHT-LTF for 802.11ac. The inverse channel transfer function is calculated for each 
subcarrier R individually using the L-LTF definitions L from Section 21.3.8.2.3 of Part 11: 
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications 
[1] as shown in Equation 7-6. The signal names are included in Figure 7-11. The 
frequency offset index k from the subcarrier timing is used. The channel estimation 
block is implemented in a parallel path to minimize latency to the data path. The values 
of Hest are given to the channel equalization module where they are stored in memory. 
They have the same data type as the incoming subcarriers. Beginning with the L-SIG, 
the channel equalization uses those values to apply zero forcing to get signal Yest. The 
fixed-point format of <2.14> is sufficient to represent the values of Yest. Larger values 
are saturated. 
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Equation 7-6: Channel Estimation and Compensation 

The signal Yest is passed to the pilot phase modules that follow the same structure as 
the channel estimation and equalization. Removing the cyclic prefix leads to a phase 
jump between consecutive OFDM symbols due to the residual carrier frequency offset 
after the synchronization. The phase for the current OFDM symbol αn is calculated 
based on the pilot sequences P. These sequences are taken from sections 17.3.5.10 
and 21.3.10.10 of Part 11: Wireless LAN Medium Access Control (MAC) and Physical 
Layer (PHY) Specifications [1] at the frequency offset index k. The phase offset 
between OFDM symbols is compensated by adding the difference to the last phase 
estimation from OFDM symbol n - 1. The estimated phase β of OFDM symbol n is 
applied to the OFDM symbol n + 1 by the Phase Correction module. This operation 
does not change the magnitude of the values, so the fixed-point format is kept. 

𝛼𝛼𝑛𝑛 = ∢��𝑃𝑃𝑛𝑛𝑘𝑘
𝑘𝑘

𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘,𝑛𝑛� 

βn =  𝛼𝛼𝑛𝑛 + (𝛼𝛼𝑛𝑛 − 𝛼𝛼𝑛𝑛−1) 
𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘,𝑛𝑛+1 = 𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘,𝑛𝑛+1(cos(βn) + 𝑖𝑖 sin(βn))  

Equation 7-7: Phase estimation and Compensation 

The next downstream module is the format detection, whose functionality is described 
in section 7.2.5. The default operation mode of this module is just a bypass, which does 
not apply any changes to the data. As the last step of the RX I/Q processing, the 
clockwise rotation of VHT-SIG-A2 (refer to Section 21.3.4.5 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]) is reversed. 

Module Output timing 
Sample Timing Generation ~1 sample/3 clock cycles 

(320 samples per OFDM symbol) 
Cyclic Prefix Removal ~1 sample/3 clock cycles 

(256 samples per OFDM symbol) 
FFT 256 subcarriers/OFDM symbol 

burstwise Demapper 
Channel Estimation 
Channel Equalization 
Pilot Phase Estimation 1 phase estimate/OFDM symbol 
Phase Correction 256 subcarriers/OFDM symbol 

burstwise VHT-SIG-A2 Rotation 
Table 7-3: RX IQ Processing Transfer Timing 
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The timing of the data stream is changed inside the RX I/Q Processing module. A 
summary for all submodules is given in Table 7-3. The input is given by the digital 
downconversion at a sample rate of 80 MS/s. The Cyclic Prefix Removal module 
removes 64 samples from the stream. Because of the chosen FFT architecture 
configuration the output of the Xilinx core is given burstwise. This transfer timing is kept 
for all downstream modules. The only exception is the Pilot Phase Estimation module 
that computes one phase estimate per OFDM symbol. 

7.2.4.1 RX I/Q Processing Latency 
The overall latency of the RX I/Q Processing module for the last sample of the OFDM 
symbol is 665 clock cycles as shown in Figure 7-12. The FFT latency is smaller than 
reported by the Xilinx IP Generator, and this latency includes loading of all 256 samples. 
During the packet, the FFT executes and unloads samples in 617 clock cycles after the 
last sample arrived. The remaining clock cycles per OFDM symbol are used to transfer 
data from the input FIFO to the FFT core. By the time the last sample is available on the 
input, the FIFO is empty, and it is passed to the core as fast as possible. The delay of 
the FIFO is unknown, which is indicated in Figure 7-12. All other modules have a fixed 
latency. 

 
Figure 7-12: RX IQ Processing Latency 

7.2.5 PPDU Format Detection 
To distinguish the PPDU formats non-HT, HT and VHT the constellations of VHT-SIG-A 
and the HT-SIG are rotated compared to a non-HT frame as shown in Figure 21-20 and 
Figure 19-7 of Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer 
(PHY) Specifications [1]. This rotation is determined by the format detection module 
within the RX IQ processing. It is controlled by the RX PHY state machine. 

Whenever the L-SIG reports an MCS 0 transmission with more than 6 OFDM symbols 
the PPDU is treaded as an VHT candidate. An VHT frame would contain at least six 
OFDM symbols after the L-SIG with N_SYM = 1. In this case the format for the I/Q 
processing is set the VHT and enables the format detection module. The demapper 
then marks the next two OFDM symbols as VHT-SIG-A. The format detection module 
saves those subcarriers in an internal FIFO and analyses the rotation. Based on the 
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signal names given in Table 7-2 the operation is provided in Equation 7-8. After all 
subcarriers of the two OFDM symbols have been processed, there are two d values. 
d=1 represents the presence of a rotated BPSK modulation. The detected format is 
then reported based on Table 7-4. The state machine sets the configuration for I/Q and 
bit processing based on the given format and instructs the format detection module to 
flush the saves subcarriers. During this step the format detection module reassembles 
the field mapping of the subcarriers based on the detected format. After all subcarriers 
have been flushed out of the internal FIFO the module returns to its default bypass 
state. 

𝐼𝐼𝑛𝑛 = � �𝑟𝑟𝑟𝑟(𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘,𝑛𝑛)�
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𝑄𝑄𝑛𝑛 = � �𝑖𝑖𝑖𝑖(𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘,𝑛𝑛)�
26

𝑘𝑘=−26

 

𝑑𝑑𝑛𝑛 =  �1 if 𝐼𝐼𝑛𝑛 < 𝑄𝑄𝑛𝑛
0 otherwise 

Equation 7-8: Format Detection Algorithm 

𝒊𝒊𝟎𝟎 𝒊𝒊𝟏𝟏 format 

0 0 Non-HT 

0 1 VHT 

1 0 undefined 

1 1 HT 
Table 7-4: Format Detection Translation 

7.2.6 RX Bit Processing 
The RX bit-processing chain deinterleaves, decodes, and descrambles the data. It 
provides the received bits to the RX PHY state machine and the PSDU bytes to the 
MAC. The block diagram is shown in Figure 7-13. Details about data types and control 
information is given in Table 7-5. 

 
Figure 7-13: RX Bit Processing Block Diagram 
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Module Output Data Type Output control information 
RX IQ Processing CFX 2.14 Field Map 

Subcarrier Timing Packet Termination 
Align Configuration Bit Processing Configuration 
LLR Demapper FXP8.0 Array (8 elements) 
Softbit Serializer FXP8.0 
Deinterleaver 
Depuncturing FXP8.0, Boolean 

Array (2 elements) 
Viterbi Boolean 
Descrambler 
PSDU Masking U8 - 

Table 7-5: RX Bit Processing Data Types and Control Information 

The first module of the chain is the Packet Termination module. It passes all samples 
that have OFDM symbol indices in the subcarrier timing cluster below the value given 
from the RX PHY state machine. Passing only these samples ensures that the packet 
end is correctly processed. If you abort the current packet reception, this module 
terminates all I/Q data by setting the last OFDM symbol index to 0. 

Next block is the Align Configuration module. It has two functions. First function is to 
align the bit-processing configuration cluster from the RX PHY state machine with the 
start of a new OFDM symbol. All other control information is terminated in this module. 
The bit-processing configuration is transferred parallel to the data stream, and it 
contains the following information: 

• Packet format 
• Bandwidth 
• Modulation 
• Coding rate 
• PSDU length (in bytes) 
• Valid bits in current OFDM symbol 
• Descrambler enable flag 
• Viterbi flush required flag 

The second function is the filtering of all noncoded fields for downstream modules. It 
uses the field map provided by the RX I/Q processing chain. 

The I/Q samples in the coded fields are processed by the log-likelihood ratio (LLR) 
Demapper block. Based on the given modulation scheme, an array of up to eight 
softbits is given at the output. The data type of each softbit is unsigned 8-bit integer. 

The Softbit Serializer module takes this array of softbits and provides the serialized 
stream on the output. The number of valid softbits in the array is derived from the 
modulation. An internal FIFO is used to buffer softbits on the input. 
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The Deinterleaver module reverts the binary convolutionally encoded (BCC) interleaver 
operations defined in sections 17.3.5.7 and 21.3.10.8 of Part 11: Wireless LAN Medium 
Access Control (MAC) and Physical Layer (PHY) Specifications [1]. The write operation 
into the memory is based on equations 21 through 82 of [1], which reverses the second 
permutation. The read operation is based on equation 21-77 of [1], which reverses the 
first permutation. Reading is started as soon as all softbits of the current OFDM symbol 
are saved to memory. A double page memory is used, which enables reading and 
writing at the same time. 

Based Figures 17-9 and 19-11 of Part 11: Wireless LAN Medium Access Control (MAC) 
and Physical Layer (PHY) Specifications [1], the Depuncturer module converts the 
incoming bit stolen data sequence to the bit inserted data sequence. Each bit gets a 
puncturing flag attached depending on whether it was transmitted or left out. One 
element of A and the corresponding element of B are combined into an array of two 
elements, where A and B are defined as in Figure 17-9 and 19-11 of Part 11: Wireless 
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications  [1]. 

The array is given to the Viterbi wrapper, which converts the softbits into the required 
format and inserts a softbit value of zero (the “maximum uncertainty value”) for all 
punctured bits before feeding the sequence to the Viterbi decoder (see section 10.4 for 
implementation details). After the last softbit of the current code word, the Viterbi is 
flushed to get the remaining bits out of the core. For flushing, strong zeros are pushed 
to the input with data bit flag set to FALSE. The data bit flag has the same latency as 
the data path. Hence on the output of the core, the data bit information can be used to 
filter out the zeros from the flushing operation. The bits of the code word are provided 
at the output. 

The Descrambler module processes the bits at the output of the decoder. If the 
scrambler is disabled, the input bits are bypassed to the output. On activation, detected 
by the rising edge of the enable signal, the Descrambler module assumes it is receiving 
a packet starting with the SERVICE field and uses the first seven bits to extract the 
scrambler seed. Those initial bits are overwritten by zeros. Afterward, all bits are 
descrambled with the recovered seed until deactivation. 

The output is transmitted to the RX PHY state machine. Before sending to the MAC, 
the bit stream is filtered by the PSDU Masking module. The SERVICE, TAIL, and PAD 
fields are removed, and the bits are concatenated to bytes. The length of the PSDU is 
given by the configuration. Padding bits are removed. For the 802.11ac format, parts of 
the PAD field may be included in the PSDU data stream (refer to Section 7.2.7 for more 
information).  
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Module Output Timing 
Packet Termination 256 subcarriers burstwise/OFDM symbol 
Align Configuration NSD data subcarriers/OFDM symbol (48-108) 

burstwise; gaps due to pilots LLR Demapper 
Softbit Serializer NCBPS coded softbits/OFDM symbol (48-864) 

burstwise; gaps due to pilots 
Deinterleaver NCBPS coded softbits/OFDM symbol (48-864) 

burstwise 
Depuncturing NDBPS encoded stream values or data bits/OFDM symbol (24-720) 

Peak rate: 1 value/clock cycle 
 

Viterbi 
Descrambler 
PSDU Masking NDBPS/8 data bytes/OFDM symbol (3-90) 

Peak rate: 1 byte/10 clock cycles 
Table 7-6: RX Bit Processing Transfer Timing 

The output timing of the submodules is given in Table 7-6. The number of values 
depends on the format, bandwidth, and MCS. The referred variables can be found in 
Tables 17-4, 17-5, 21-30 and 21-38 of Part 11: Wireless LAN Medium Access Control 
(MAC) and Physical Layer (PHY) Specifications [1]. In brackets, the minimum and 
maximum values are given indicating the valid range. The minimum value is based on L-
SIG, which uses non-HT mode with MCS 0. The maximum value is based on VHT 40 
MHz transmissions using MCS 9.  

The RX I/Q Processing module provides 256 subcarriers in one burst. The first module 
that changes this pattern is the Configuration Alignment. Only subcarriers belonging to 
coded fields remain on the output. Since there are multiple pilot tones, this stream 
contains gaps. The serialized stream on the output of the Softbit Serializer module can 
have much more valid items per OFDM symbol. Nevertheless, the pilot gaps remain if 
BPSK modulation is used, where each subcarrier is translated to one softbit by the LLR 
Demapper. The gaps are gone after the Deinterleaver module because the softbit 
stream is read burstwise from the internal memory. The Depuncturer adds gaps to this 
data stream when there are two valid bits of stream A and B available. Adding 
punctured bits does not produce gaps. The Viterbi generates data on the output as soon 
as traceback length input bits are provided to the input. As a result, the output is given 
burstwise where each burst has traceback length bits. The concatenation to byte data 
type of the PSDU reduces the data rate by factor 8. At a coding rate of 5/6, the peak 
rate is reached. 
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Figure 7-14: RX Bit Processing Latency 

7.2.6.1 Rx Bit Processing Latency 
The latency of the RX Bit Processing chain depends on the format, bandwidth, and 
MCS. Similar to Table 7-6, Figure 7-14 refers to the two corner cases L-SIG and highest 
MCS at highest bandwidth. The latency is given for the last subcarrier of the packet 
generated by the RX I/Q Processing module. Most of the modules have a fixed latency. 

The delay of the Softbit Serializer depends on the modulation. For BPSK, each 
subcarrier is mapped to one softbit so the serialization does not add any delay. The 
internal FIFO is empty when the last value arrives. The FIFO delay is unknown. The 
latency is 2 because of internal registers. For 256-QAM, each softbit array has to be 
split into eight softbits on the output. When the last value arrives, 108 (NSD) of 864 
(NCBPS) softbits are processed on the output. The delay for the last softbit added with the 
two register stages results in 758 clocks latency. 

The Deinterleaver has to store one complete OFDM symbol of softbits. The read 
operation starts as soon as the last value arrives. NCBPS softbits must be read before the 
last sample is available on the output of the Deinterleaver. An additional latency of 11 is 
incurred because of the pipeline stages. 

The latency of the Viterbi decoder is determined by the chosen traceback length. An 
additional latency of 15 is incurred due to pipeline stages (see Section 10.4 for 
implementation details). 

The latency for other configurations can be calculated using Equation 7-9 with values 
from tables 17-4, 17-5, 21-30 and 21-38 of Part 11: Wireless LAN Medium Access 
Control (MAC) and Physical Layer (PHY) Specifications [1]. 

𝐿𝐿𝐵𝐵𝑖𝑖𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑛𝑛𝑃𝑃 = 406 + 2𝑁𝑁𝐶𝐶𝐵𝐵𝑃𝑃𝐶𝐶 − 𝑁𝑁𝐶𝐶𝑆𝑆(+𝐹𝐹𝐼𝐼𝐹𝐹𝐹𝐹) 

Equation 7-9: RX Bit Processing Latency 

7.2.7 RX PHY State Machine 
The RX PHY state machine, which is based on Figure 21-37 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1], provides the 
configuration for RX IQ and RX Bit Processing modules and generates indications for 
the MAC. Notice also that the PHY is not capable of decoding VHT MU PPDUs, so the 
reception of VHT-SIG-B is skipped as described in Section 21.3.20 of Part 11: Wireless 
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LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]. The 
state diagram is given in Figure 7-15. The word timing in this diagram refers to the 
known RXTIME due to the reception of the L-SIG. 

 
Figure 7-15: RX PHY State Machine States 

Initialization: It is the startup state. In this state, the internal configuration is reset such 
that it can receive the first coded field in the packet (L-SIG in the primary subband). This 
setting consists of the non-HT format, 20 MHz bandwidth, disabled scrambler, and MCS 
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0. The unknown length of the packet means that the last OFDM symbol index is set to 
the maximum unsigned 16-bit integer value of 65,535. 

RX L-SIG: As soon as the synchronization detects a packet, the processing chain uses 
the configuration from the Initialization state to provide the 24 bits of the SIGNAL field 
to the RX PHY state machine. The received bits are verified to be a valid L-SIG field 
based on section 17.3.4 of Part 11: Wireless LAN Medium Access Control (MAC) and 
Physical Layer (PHY) Specifications [1]. The L-SIG check includes verifying the following 
conditions: 

• R4 of RATE field is one 
• Bit 4 is zero 
• SIGNAL TAIL field is all zeros 
• Parity bit is matching 
• LENGTH>0 

The result of the check is used as condition L-SIG valid in the state machine. As soon as 
this condition is evaluated the state machine leaves this state. 

If L-SIG is invalid, the reception of the current packet is aborted. The last OFDM symbol 
index is set to 0. This forces the Sample Timing Generation module of the RX I/Q 
processing chain and the Packet Termination module of the RX bit processing chain to 
finish the current OFDM symbol and stop. Because there is no packet length 
information available at this point, the timing information is marked as invalid. 
Furthermore, the internal format violation error is reported using the PhyRxEnd 
indication. 

If a valid L-SIG is received, the index of the last OFDM symbol is calculated based on 
equation 17-11 of Part 11: Wireless LAN Medium Access Control (MAC) and Physical 
Layer (PHY) Specifications [1]. This index as well as MCS and PSDU length are provided 
to the processing chain. In addition, the packet frame timing is set to valid. There are 
multiple options for the following state. The format can be enforced by the host. In this 
case the state machine switches to End of PSDU RX state or RX VHT-SIG-A state based 
on the given information. If the host does not overwrite the format the next state 
depends whether the received PPDU could be VHT format. If so the next state is wait 
for format. Otherwise the frame is received as non-HT format frame in the End of PSDU 
RX state. 

Wait for format: In this state, the format detection module in the RX IQ processing is 
enabled to detect the format based on the received modulation (see section 7.2.5 for 
details). Once the format is received non-HT PPDUs are received in the End of PSDU 
RX state. The PSDU length has already been set in L-SIG. VHT frames require the 
decoding of RX VHT-SIG-A which would be the next step. Unsupported formats lead to 
a termination of the packet reception. 
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RX VHT-SIG-A: Similar to the RX L-SIG state, the processing chain is configured to 
provide the bits of the VHT-SIG-A to the RX PHY state machine. The code word of VHT-
SIG-A is provided in two OFDM symbols. The Viterbi decoder flush required flag in the 
bit processing configuration cluster is set for the second OFDM symbol. This bit-
processing configuration cluster is aligned with the data stream in the RX Bit Processing 
block by the Configuration Align Configuration module (see section 7.2.6). Hence, 
accurate indication of the current OFDM symbol index is available from the RX Bit 
Processing module and can be used to set the Viterbi decoder flush required flag. 

The 48 bits of the VHT-SIG-A are captured, and its validity is verified based on Section 
21.3.8.3.3 of Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer 
(PHY) Specifications [1]. The condition VHT-SIG-A valid is based on the following 
checks: 

• Bandwidth is supported by PHY 
• Group ID indicates VHT SU PPDU (0 or 63) 
• Short GI is set to zero (disabled) 
• B2 is set to zero (BCC encoding) 
• CRC checksum is matching 

If VHT-SIG-A is invalid, the reception is aborted, similar to an abortion out of the L-SIG 
state but here the timing information is known from a successful L-SIG reception.  

If VHT-SIG-A is valid, you can configure the bandwidth, format, MCS and PSDU length 
in the processing chain. Since there is no specific length information given in VHT-SIG-
A, the PSDU length is calculated using Equation 21-112 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1].  

Wait for last sample: The state machine waits until the Sample Timing Generation 
module of the RX I/Q Processing module indicates that the last sample of the current 
OFDM symbol has been processed. This signal is captured and indicated as done 1,000 
clock cycles later outside of the state machine. It may be for correctly received frames 
that the 1,000 clock cycles already elapsed. The purpose of the 1,000 clock cycles is to 
finish processing in the RX IQ processing before configuring the RX path for a new 
packet reception. On leaving the state a PHY RX end indication is generated using the 
internal information of the RX error. 

End of PSDU RX: This field is entered when the signaling information is correctly 
received and the data field is to be decoded. Similar to the RX VHT-SIG-A state, flushing 
the Viterbi decoder is enabled only for the last OFDM symbol of the packet, which is 
identified by the last OFDM symbol index computed in RX L-SIG state. Furthermore, in 
non-HT format, the number of valid data bits in the last OFDM symbol before tail and 
padding is known and configured to the Viterbi module so that the TAIL bits are the last 
to be decoded. For VHT format, the padding is inserted before tail bits. The valid bits 
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limitation is not used in this case. All bits of the last OFDM symbol are processed by the 
Viterbi decoder. 

The state is left as soon as the PSDU Masking module in RX bit processing indicates 
that the last byte of PSDU has been decoded.  

7.2.8 PHY RX Timing 
The overall timing of the RX chain including Synchronization, I/Q and bit processing, and 
the RX PHY state machine is shown in Figure 7-16 for non-HT packets. Time is 
represented on the horizontal axis. On the vertical axis, several selected modules with 
important outputs or that change the transfer timing are displayed. The colored 
rectangles correspond to the data values of one OFDM symbol. The size and the 
placement among the time axis are related to the latencies and transfer timings of the 
modules. The black arrows show important control signals between processing chain 
and state machine and between PHY and MAC. The arrows are based on the timing 
information. Neither the start nor the end position must be related to the module that 
generates or consumes this control information. 

 
Figure 7-16: RX PHY Timing for Non-HT Packets 

Figure 7-16 shows the timing of the receiver for the packet of non-HT with MCS 7 and 
NSYM=3. RF and Synchronization add the latency between over-the-air transmission and 
the synchronization output. The first OFDM symbol after the packet start is L-LTF-2. The 
RX PHY state machine has configured the RX IQ and Bit Processing modules to receive 
L-SIG. 

As soon as the last sample of the L-SIG field is available in the FFT the execution starts. 
The burstwise unloading of data is done in parallel to reception of the next OFDM 
symbol on the FFT module input. L-LTF-2 is terminated in the Align Configuration 
module of the RX Bit Processing block. 

As the first dynamic field, the L-SIG is the first field handled by the RX Bit Processing. L-
SIG uses MCS 0, so it has only 24 data bits, and the latency is much smaller than one 
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OFDM symbol duration. The decoding and flushing of the Viterbi decoder take most of 
the time. The RX PHY state machine can update the configuration cluster for the 
reception of the coded data symbols based on the L-SIG field contents long before the 
next OFDM symbol is unloaded by the FFT.  

Starting with L-DATA-1, the RX Bit Processing chain uses MCS 7. This results in a larger 
number of bits on the Softbit Serializer module output. The Viterbi divides the bits into 
chunks of the traceback length. Because of this processing pattern, the output of the 
RX Bit Processing chain is not given an OFDM symbol.  

The code word ends in the last OFDM symbol, and the Viterbi is flushed. Due to 
padding bits, the decoding can end before the last bit has been received. The PSDU 
Masking module notifies the RX PHY state machine to send out RX PHY end indication 
goes to wait for packet end state. As the last sample has entered the I/Q processing 
more than 1,000 clock cycles ago the state is immediately left toward the Initialization 
state. After the Initialization state, the RX chain is ready to process a new packet. 

 
Figure 7-17: RX PHY Timing for Invalid Packets 

Figure 7-17 illustrates the termination of the reception in case L-SIG was not valid. An 
invalid VHT-SIG-A is handled similarly. Like in Figure 7-16, L-SIG is provided to the RX 
PHY state machine. Once it is determined that L-SIG field contents are invalid, the last 
OFDM symbol index is set to zero, and the state machine goes to wait for last sample 
state. 

At this point in time, the FFT may be filled with data from the next OFDM symbol and 
cannot be aborted immediately. The Sample Timing generation module in RX IQ 
Processing block completes the current OFDM symbol and notifies RX PHY state 
machine after the last sample. RX PHY state machine switches to wait for packet end 
state and waits for the duration of one OFDM symbol. During this time the FFT unloads 
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the remaining data. This data is terminated in the Packet Termination module of the RX 
Bit Processing chain. 

 
Figure 7-18: RX PHY Timing for VHT packets 

The reception of a VHT packet with a bandwidth of 40 MHz at MCS 9 is shown in Figure 
7-18. Since the process before L-SIG is equal to Figure 7-16, it is left out. After the L-
SIG field, the RX PHY state machine switches to wait for format state and enables the 
format detection module. The module consumes the samples of VHT-SIG-A and reports 
the format back to the RX PHY state machine. Once it is determined that the format is 
VHT, the state machine transitions to RX VHT-SIG-A state. The format detection module 
is instructed to flush the consume samples. Those are given burstwise, which might 
cause the frequency offset index to leave out subcarriers from the FFT output, which 
are not data subcarriers used for VHT-SIG-A. The timing of VHT-SIG-A reception is 
similar to L-SIG in the Bit Processing chain. Because the VHT-SIG field only has a small 
number of bits and the Viterbi code is flushed at the end of VHT-SIG-A2, the 48 bits 
arrive in one burst at the RX PHY state machine. 

If VHT-SIG-A is determined to be invalid, the reception would be aborted similar to the 
L-SIG invalid case illustrated in Figure 7-17. In this case, VHT-STF would be the last 
OFDM symbol getting out of the FFT. 

If VHT-SIG-A is valid, the parameters bandwidth and MCS are obtained from the field 
and used to set the configuration clusters for the processing chain. PHY RX start 
indication is sent to MAC and the RX PHY state machine transitions to the End of PSDU 
RX state and waits for end of decoding.  

The next OFDM symbols contain training sequences and VHT-SIG-B. This information is 
not handled in RX Bit processing chain. 



128 | ni.com | LabVIEW Communications 802.11 Application Framework Manual 

In this example, the RX Bit Processing is for MCS 9, which consists of 256-QAM 
modulation. This scenario results in a large number of bits generated by the LLR 
Demapper, which are serialized by the Softbit Serializer. Reading and writing the 
Deinterleaver memory overlaps for this large number of bits is the reason for having a 
double page memory in this module. The Viterbi is flushed on the last OFDM symbol as 
in non-HT format. RX PHY end indication is sent by the state machine if the last byte 
has been provided to MAC.  

7.3 PHY TX 
The PHY transmitter receives the PhyTxStart request and the corresponding PSDU data 
from the MAC and generates the PHY frame. A high-level block diagram is shown in 
Figure 7-19.  

• The TX PHY SAP is the interface to the MAC. It provides the PhyTxStart request 
and the PSDU data. 

• The PHY TX Request Handler interprets the PhyTxStart request and creates 
configuration for the submodules of the PHY TX. 

• The PSDU Discard module discards the PSDU data if the PhyTxStart request did 
not pass the consistency check (for example, invalid MCS, PSDU length=0, or 
bandwidth not supported by the USRP device model). 

• The TX Bit Processing includes serialization, scrambling, convolutional encoding, 
puncturing and interleaving. It prepares the data for the signal field (L-SIG, VHT-
SIG-A and VHT-SIG-B) and for the data field. 

• The TX IQ processing generates the whole PHY frame which consists of 
multiple OFDM-symbols. This includes the training fields (L-STF, LTF, VHT-STF, 
VHT-LTF), the signal fields, and the data field. For each field, the following 
operations are performed: channel duplication, channel rotation, IFFT prescaling 
and FFT with cyclic prefix (CP) insertion. The training fields are read from a 
memory (“assembly” modules) whereas the subcarrier data for the signal fields 
and the data field is taken from the bit processing. 

• The TX Data Sink module writes the PHY frame (time-domain signal) to the 
following FIFOs: 

o TX to RF (target scoped): The signal is passed to the RF for transmission 
over the air. 

o Internal loopback (target scoped): The signal is passed to the RX PHY of 
the same device. This way the RF is bypassed. This operation mode is 
useful for debug purposes and not used in normal operation. 

o T2H TX Baseband: The signal is passed to the host where it is used for 
displaying the TX power spectrum. A filter is used to select only a subset 
of the samples. The purpose of this filter is to reduce the data rate which 
is sent to the host. 
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All modules operate in the baseband clock domain of 250 MHz. Every module is 
designed to keep up with the data rate from the upstream module, so there is no need 
for throttle control inside the modules. 

 
Figure 7-19: PHY TX Block Diagram 

7.3.1 TX Request Handler 
The TX Request Handler performs a consistency check on the incoming PhyTxStart 
request (for example, invalid MCS, PSDU length=0, or bandwidth not supported by the 
USRP device model) and generates various signals. 

The following signals are needed by the other PHY TX modules: 

• TX vector: The captured PhyTxStart request (valid only if it passed the 
consistency check)  

• PSDU discard configuration: the configuration for the PSDU Discard module. If 
the PhyTxStart request was invalid and the PSDU data shall be discarded, the 
“discard PSDU” flag is set to True. 

• Start of packet: Pulse signal which marks the start of a packet. It is generated 
immediately after a valid PhyTxStart request was received. It is used by the TX 
IQ processing module to send out the L-STF immediately. 

• Symbol trigger: Pulse signal which marks the beginning of an OFDM symbol. 
The timing is aligned with the OFDM symbol pulse which is generated in the RF 
loop. 

• Symbol index: Index of the OFDM symbol which shall be processed by the TX 
Bit processing and TX IQ processing upon receiving the trigger. The initial value is 
2, that is, the L-STF field will be skipped because it is handled separately. The TX 
Bit processing internally adds 2, that is, it skips the L-LTF field and starts 
processing the L-SIG field. 

The following signal is needed by the PHY RX: 

• TX active: the Boolean flag is set to True while the TX modules are handling a 
valid request. The flag is used by the PHY RX to mute the RX signal which is 
received from the RF module. This ensures that a packet generated by the local 
PHY TX is not received by the local PHY RX. 

The following signal is needed by the MAC: PhyTxEnd indication, which informs the 
MAC that the PhyTxStart request was processed. If the request was valid, the 
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indication is sent after the frame was generated completely. If the request was invalid, 
the indication is generated immediately (after the PSDU was discarded) and the 
“unsupported mode” flag is set to True. 

7.3.2 TX Bit Processing 
The purpose of the TX Bit Processing module is to generate the signal fields and 
enqueue the PSDU into the data stream. This stream is then serialized, scrambled, 
encoded, punctured and interleaved before it is passed to TX I/Q Processing. Its block 
diagram is shown in Figure 7-20. The types of the data path and the elements of the 
control path are listed in Table 7-7. 

 
Figure 7-20: TX Bit Processing Block Diagram 

Module Output Data Type Output control information 
MAC TX U8  
TX PHY State Machine U32 TX bit processing parameter 

length11 
enable scrambler 

Bit Serializer Boolean enable scrambler 
Scrambler Boolean  
Convolutional Encoder Boolean array (2 elements)  
Puncturer Boolean  
Interleaver Boolean packet configuration 

Table 7-7: TX Bit Processing Data Types and Control Information 

The first module in TX Bit Processing is the TX PHY State Machine which encodes the 
signal fields according to section 17.3.4 ( L-SIG), 21.3.8.3.3 (VHT-SIG-A) and 21.3.8.3.6 
(VHT-SIG-B) of Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer 
(PHY) Specifications [1]. The Data Generator VI furthermore turns PSDU into a 

                                            
11 Defines actual length of U32 output 
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sequence of SERVICE field, PSDU data, TAIL, and PADDING for the 802.11a format 
according to 17.3.5 in Part 11: Wireless LAN Medium Access Control (MAC) and 
Physical Layer (PHY) Specifications [1] or SERVICE field, PSDU data, PADDING and 
TAIL for 802.11ac format according to 21.3.4.9 in Part 11: Wireless LAN Medium 
Access Control (MAC) and Physical Layer (PHY) Specifications [1], respectively. The 
generator outputs are combined using the enable driven stream combiner (EDSC) 
pattern (see appendix, section 10.1.1). The TX Bit Processing has a head start of two 
OFDM symbols to have the first bits available when needed by the TX I/Q Processing. 
This is due to the pre-generation of L-STF (two OFDM symbols) in time domain; the I/Q 
data of L-STF is stored in a block RAM. 

Each signal field is generated in one burst. The data bits are generated as one 
continuous burst per OFDM symbol in dependence on NDBPS. A small FIFO with a four-
wire handshake ensures that bytes for at least one OFDM symbol are available. 
Furthermore, TAIL and PADDING bits are also generated as part of the corresponding 
burst. In the worst case, the bit processing chain generates bits for up to two OFDM 
symbols in one burst, which is compensated in a FIFO of the TX IQ Processing Data 
Assembler. 

After the downstream module is the Bit Serializer module, which converts data fields 
and PSDU data into one bit per cycle. At the start of the module, a FIFO is used to 
ensure that the module can process the incoming data rate. The maximum number of 
data bit per symbol NDBPS is 720 (802.11ac, 40 MHz, MCS 9). Because PSDU data is 
given in bytes, the FIFO must store at least 90 samples. 

After bit serialization, scrambling, convolutional encoding, puncturing, and interleaving 
are applied as described in 17.3.5.5 – 17.3.5.7 and 21.3.10.4 – 21.3.10.8 of Part 11: 
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications  
[1]. The scrambler and the encoder must be reset before the first bit of the data field is 
processed. The Scrambler module is bypassed for signal fields. The Puncturer module 
serializes the two streams of the convolutional encoder using the puncturing patterns of 
Figure 17-9 and 19-11 of Part 11: Wireless LAN Medium Access Control (MAC) and 
Physical Layer (PHY) Specifications [1]. A FIFO is used on the input of the module since 
the data rate is higher on the input. The Interleaver applies the BCC interleaver 
operations, which are defined in Section 17.3.5.7 and 21.3.10.8 of Part 11: Wireless 
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1]. The 
write operation into the memory is based on equation 21-77 of Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications [1], which 
applies the first permutation. The read operation is based on equation 21-82 of Part 11: 
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications 
[1], which applies the second permutation. Reading is started as soon as all bits of the 
current OFDM symbol are saved to memory. A double page memory is used, which 
enables reading and writing at the same time. The output of the Interleaver and the 
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modulation scheme that is used are provided on the output of the TX Bit processing 
module. 

Module Output Timing 
L-SIG Generator U32 on start of L-SIG processing 
VHT-SIG-A Generator Two U24 on start of VHT-SIG-A processing burstwise 
VHT-SIG-B Generator U32 on start of VHT-SIG-B processing 
Data Generator NDBPS/8 U32/OFDM symbol burstwise 
Bit Serializer NDBPS bits or array of bits/OFDM symbol burstwise 
Scrambler 
Convolutional Encoder 
Puncturer NCBPS bits/OFDM symbol burstwise 

 Interleaver 
Table 7-8: TX Bit Processing Transfer Timing 

The output timing of the submodules is given in Table 7-8. All submodules of the TX 
PHY state machine generate data on the asserted enable signal from the OFDM symbol 
trigger type module. The modules need up to two U32 words. Starting with the OFDM 
symbol for the data field, the Data Generator provides the required number of bytes. 
After the Bit Serializer, NDBPS clock cycles are needed to complete the transfer. The rate 
½ convolutional encoder doubles the number of bits but due to the transfer of an array, 
the number of transfers is not changed. After puncturing, NCBPS bits remain. 

 
Figure 7-21: TX Bit Processing Latency 

The latency of the bit processing chain depends on the format, bandwidth, and MCS. 
Similar to Table 7-8, Figure 7-21 refers to the two corner cases of non-HT mode with 
MCS 0 and highest MCS at highest bandwidth. The latency is given for the first 
subcarrier of the packet. Thus, this is when the TX bit processing chain needs from start 
trigger until the first valid bit is provided. Most of the modules have a fixed latency. 

The Interleaver must store bits from one complete OFDM symbol. The read operation 
starts as soon as the last value arrives. NCBPS bits must be read before the last sample is 
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available on the output of the Interleaver. An additional latency of 11 comes from the 
pipeline stages. 

The latency of the FIFOs in Bitserializer and Puncturer are unknown. 

7.3.3 TX IQ Processing 
The purpose of the TX IQ Processing module is to add the training fields and to convert 
the bits from TX Bit Processing into baseband I/Q samples. The OFDM symbol trigger 
of the RF loop is used to clock the generation of the OFDM symbols. The block diagram 
is illustrated in Figure 7-22. The data types and control information are listed in Table 
7-9. 

 
Figure 7-22: TX IQ Processing Block Diagram 

Module Output Data Type Output control information 
TX Bit Processing Boolean  
Create Packet Structure  Field Map 

Subcarrier Timing 
TX IQ Processing Parameter 

L-STF Assembler CFX 3.1312  
Assembler modules CFX 2.14  
Channel Duplication CFX 2.14  
Channel Rotation CFX 2.14  
IFFT Prescale CFX 0.16  
Xilinx IFFT CFX 3.13  

Table 7-9: TX IQ Processing Data Types and Control Information 

                                            
12 Bypasses all following modules 
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The Create Packet Structure modules creates a timing structure, a field map, and the 
processing parameters that stay constant along the OFDM symbol. These parameters 
can include bandwidth, CP length, channel duplication, channel rotation, and tone 
scaling factor. 

The field map controls which field is generated for the current OFDM symbol. Using the 
EDSC pattern (see appendix, section 10.1.1) for field generation reduces the latency 
caused by parallel execution. There is one assembler for each training field, for the 
pilots, and one for the bit taken from TX Bit Processing module.  

TX IQ Processing must start delivery of I/Q data as soon as possible after the TX start 
request is triggered. Because the IFFT takes about half an OFDM symbol (as described 
in section 7.3.4), the L-STF is pregenerated in the time domain, and its I/Q data is stored 
in a block RAM. For each combination of bandwidth and primary subband, a bank is 
reserved in the memory. Because L-STF is a Non-HT field, you do not need to 
distinguish between 802.11a and 802.11ac. For 802.11a, an additional bank for DC 
centered signal exists. Because L-STF is a repeating sequence in time domain with a 
period of 0.8 µs, you need to store only 64 samples. 

The remaining training fields are generated according to Sections 21.3.4.3 (L-LTF), 
21.3.4.6 (VHT-STF), and 21.3.4.7 (VHT-LTF) of Part 11: Wireless LAN Medium Access 
Control (MAC) and Physical Layer (PHY) Specifications [1]. 

The L-DATA and VHT-DATA are built from bits generated by TX Bit Processing modules. 
The bit stream is buffered in a FIFO that is laid out to buffer up to three OFDM symbols, 
which are the bit processing head start, the current OFDM symbol, and the last OFDM 
symbol, if filled with padding. Besides applying the correct modulation, the module also 
rotates VHT-SIG-A2 according to 21.3.8.3.3 of Part 11: Wireless LAN Medium Access 
Control (MAC) and Physical Layer (PHY) Specifications [1]. 

The pilot tones are inserted according to 21.3.10.10 of Part 11: Wireless LAN Medium 
Access Control (MAC) and Physical Layer (PHY) Specifications [1] using the information 
from the field map. 

After the assembler modules, the channels are duplicated and rotated according to 
Sections 21.3.4.x and 21.3.7.5 of Part 11: Wireless LAN Medium Access Control (MAC) 
and Physical Layer (PHY) Specifications [1]. Here, the Create Packet Structure modules 
ensure correct settings for handling channel duplication and rotation. 

Next downstream module is the IFFT prescale. This module applies tone field scaling 
according to 21.3.7.4 of Part 11: Wireless LAN Medium Access Control (MAC) and 
Physical Layer (PHY) Specifications [1] to ensure that the time domain power of VHT 
modulated fields does not exceed the time domain power of pre-VHT modulated fields 
(each summed over all transmit channel). The scaling factor is determined in the Create 
Packet Structure module and depends on bandwidth and field type (refer to table 21-8 
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of Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications [1]). 

The last module is the IFFT, which is a wrapper around the Xilinx IFFT core. It contains a 
256-point IFFT operation using “Radix 4, Burst I/O” architecture similar to the RX IQ 
processing. In addition, the configuration input is used to enable cyclic prefix insertion 
by the core. The core configuration settings, such as this input, are dynamic and are 
provided parallel to the first sample of each OFDM symbol. A small FIFO is placed 
before the IFFT input to compensate the longer execution time due to guard interval GI2 
of L-LTF-1. The IFFT output is shifted in frequency using a toggling negation due to the 
implementation on FPGA. The fixed point format on the output is CFX 3.13 based on 
the requirements of section 3.4.3.3. 

 
Figure 7-23: TX IQ Processing Latency 

There are two paths for latency in TX I/Q processing. One goes for the pre-calculated 
samples of the L-STF in time domain. This path has only a latency of five cycles, which 
allows the PHY to ensure a packet starts at the interface to the RF when it is trigger 
inside the PHY. The second path goes for all the other symbols that are created using 
the path shown in Figure 7-23. The FFT latency is smaller than reported by the Xilinx 
core because the reported value includes loading of all 256 samples. During the packet, 
the FFT executes and unloads samples in 616 clock cycles after the last sample arrived. 
The remaining clock cycles per OFDM symbol are used to transfer data from the input 
FIFO to the FFT core. By the time the last sample is available on the input, the FIFO is 
empty and it is passed to the core as fast as possible. The delay of the FIFO is 
unknown. All other modules have a fixed latency. 

7.3.4 PHY TX Timing 
The overall timing of the TX chain including TX Bit processing and TX IQ Processing is 
shown in Figure 7-24 for packets in 802.11ac format. The timing works similarly for 
802.11a packets. Time is represented on the horizontal axis. On the vertical axis only a 
couple of module outputs are chosen that are important or change the transfer timing. 
The colored rectangles correspond to the data values of one OFDM symbol. The size 
and the placement among the time axis are related to the latencies and transfer timings 
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of the modules. The black arrows show important control signals inside the processing 
chain and between PHY and MAC. The arrows are based on the timing information. 

 
Figure 7-24: TX PHY Timing for 802.11ac Packets 

Figure 7-24 shows the timing of the transmitter for an 802.11ac packet. The RF 
transmission starts with the start of packet trigger that is given with the start of the first 
OFDM symbol. This is possible because the L-STF is unloaded from memory in time 
domain. The latency is only a few cycles. In parallel, the bit processing starts with the 
encoding of bits for the L-SIG and the I/Q processing starts assembling the L-LTF. The 
head start of four symbols for the bit processing and two symbols for the I/Q 
processing is kept during the packet generation. This design ensures that all samples 
arrive in time for I/Q processing and RF. 

Assembling the bits takes only a few cycles. Bit insertion when the code rate is applied 
in convolutional encoding and puncturing causes the chain length of valid samples to 
increase at the end of TX Bit processing. The samples leave the bit processing as a 
burst because the interleaver handles data in groups on 𝑁𝑁𝐶𝐶𝐵𝐵𝑃𝑃𝐶𝐶. 

The assemblers in RX IQ Processing module append training fields and add pilots to the 
fields generated by TX Bit Processing module. Each OFDM symbol will contain 256 I/Q 
samples. The IFFT transforms this I/Q data into time domain and adds guard interval. 
This transformation takes 360 cycles plus FIFO delay. 

In case of an invalid TX Request, there is no packet generation at all and the PHY TX 
Request handler generates the TX end indication immediately. 

7.4 RF Module 
The digital downconversion (DDC) and digital upconversion (DUC) modules are based on 
the PXIe Streaming project templates of USRP devices and NI-579x modules. Their 
block diagrams are shown in Figure 7-25 and Figure 7-26. In the DDC path, a DC Offset 
Correction module is present to estimate and compensate the residual DC offset from 
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the RX LO. This module mitigates the impact to the autocorrelation computation within 
the Synchronization block. The DC Offset Correction module estimation uses an 
average over 512 samples. After each averaging window, the LSB of the correction 
value is increased or decreased. Over time, the correction value is approaching the DC 
offset iteratively.  

 
Figure 7-25: DDC Block Diagram 

 
Figure 7-26: DUC Block Diagram 

The latencies of DDC and DUC are given in Figure 7-27 and Figure 7-28. The Fractional 
Decimator and Interpolator latencies depend on the ratio of clock rate versus sample 
rate. Since the clock rate is different between the USRP and FlexRIO hardware, the 
DDC has a target-specific latency. The latency for the DUC remains the same for both 
target types.  

 
Figure 7-27: DDC Latency 

 
Figure 7-28: DUC Latency 
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The analog parts of the device and FPGA logic that are not presented on the block 
diagram add latency to the RF path. Those can be measured using RF loopback and the 
Streaming project templates for the specific target. The results are listed in Table 7-10. 

 USRP RIO 40 MHz 
bandwidth (Data 
clock = 120 MHz) 

USRP RIO 120 or 160 
MHz bandwidth (Data 
clock = 200 MHz) 

FlexRIO or front-end 
adapter module 
(FAM) 
(Data clock = 130 
MHz) 

DDC 57 clock cycles ≈ 0.48 
µs  

72 clock cycles ≈ 0.36 
µs 

59 clock cycles ≈ 0.45 
µs 

DUC 40 clock cycles ≈ 0.33 
µs 

50 clock cycles ≈ 0.25 
µs 

40 clock cycles ≈ 0.31 
µs 

Others 
(ADC, 
DAC, and 
so on) 

100 clock cycles ≈ 
0.83 µs 

50 clock cycles ≈ 0.25 
µs 

115 clock cycles ≈ 
0.88 µs 

RF 
Round 
Trip 
Time 

197 clock cycles ≈ 
1.64 µs 

172 clock cycles ≈ 0.86 
µs 

214 clock cycles ≈ 
1.65 µs 

Table 7-10: RF latency 

8 Performance 
8.1 TX EVM 
The TX error vector magnitude (EVM) is -35 dB or better for the peak TX power level 
settings as given in Table 8-1. Measurements have been taken using NI WLAN Analysis 
Soft Front Panel Rel. 14.0 and the NI 5644R VST. 

Table 8-1: Minimum and maximum peak TX power level for EVM = -35 dB or better 

8.2 Minimum RX Sensitivity 
Minimum RX sensitivity for MCS 0 (BPSK, 1/2) and MCS 7 (64 QAM, 3/4) is presented 
in Table 8-2. The measurements follow the rule given in Section 17.3.10.2 of Part 11: 
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications 
[1]:  

1. The packet error ratio (PER) shall be 10% or less when the PSDU length is 1,000 
octets.  

2. The minimum input levels are measured at the antenna connector. 
Measurements have been taken using WLAN Generation Toolkit 14.0 and the PXIe-
5644 Vector Signal Transceiver. 

 NI USRP-2942 NI USRP-2943 NI 5791 
Frequency Min. Max. Min. Max. Min. Max. 
2.45 GHz -8 dBm 19 dBm -6 dBm 21 dBm -24 dBm 7 dBm 
5.85 GHz - - -18 dBm 10 dBm - - 
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 USRP-2953 NI-5791 
Frequency MCS 0 MCS 7 MCS 0 MCS 7 
2.437 GHz -82.5 dBm -68.5 dBm -74 dBm -62.5 dBm 
5.85 GHz -75 dBm -66.4 dBm — — 

 
Table 8-2: Minimum RX Sensitivity 

8.3 Performance Throughput 
The implementation of the middle/lower MAC in combination with the PHY reaches the 
full theoretical throughput. Table 8-3 shows the throughput values for different 
sequence types and MCS and the following for a certain configuration (802.11a 20 MHz, 
backoff=3, packet size=1,000 Bytes). The throughput values are reached with a reduced 
host application where a data source writes to the lower MAC on the FPGA directly and 
when using cables. Please note that the achievable throughput when interfacing with 
the Middle MAC SAP can be lower. 

Table 8-3: Maximal Throughput [Mbit/s] for the Configuration: 802.11a 20 MHz, Backoff=3, Packet Size=1000 
Bytes 

Sequence 
type 

MCS 
0 1 2 3 4 5 6 7 

DATA 5.49 7.99 10.4 14.78 18.82 25.55 31.6 33.73 
DATA | ACK 5.28 7.54 9.65 13.31 16.5 21.45 25.56 26.94 
RTS | CTS | 
DATA | ACK 4.87 6.73 8.36 10.98 13.05 15.97 18.14 18.83 

9 Conclusion 

LabVIEW Communications 802.11 Application Framework provides a real-time 802.11 
implementation running on NI SDR hardware. This framework enables you to focus on a 
specific area of research by utilizing the existing link and only making changes or 
additions where desired. 

Because of the flexibility of LabVIEW and the modularity of the framework, you can 
easily exchange portions of the design for prototyping new algorithms for future 
wireless systems. In addition, LabVIEW’s native interface between the host and the 
FPGA means that the design can be partitioned to profit from the parallel execution on 
the FPGA as well as calculations on the host. 

The application framework provides a comprehensive set of features. The overall 
architecture described in chapter 3 allows to extend the application framework towards 
features such as support for MIMO, 802.11p PHY extensions, QoS support, or 802.11p 
MAC extensions.  
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The application framework offers a variety of starting points for wireless research and 
prototyping. Start now by downloading an evaluation copy of LabVIEW Communications 
at www.ni.com/labview-communications. 

Questions? Email us at labview.communications@ni.com. 

10 APPENDIX 
10.1 Design Pattern 
10.1.1 Enable Driven Stream Combiner 
The enable driven stream combiner (EDSC) is used to combine information from 
different sources into one stream. You can use the EDSC to map different fields into 
the frequency domain of one OFDM symbol. The idea is illustrated in Figure 10-1 for 3 
computational VIs.   

 
Figure 10-1: Enable Driven Stream Combiner 

There is a single Stream Generation VI that generates control information for the 
computational VIs. This comprises an enable signal for each computational VI. Only one 
of these enable signals is asserted at a given time. The asserted enable signal defines 
the structure of the stream that should be generated. Afterwards, an unlimited number 
of computational VIs provide their data on the output whenever the corresponding 
enable signal is asserted. When the enable signal is not asserted, the output is zero. 
Because of this constraint, a simple OR gate can be used to combine the streams. 

There is no throttle control mechanism in this design pattern. The assumption is that 
the computational module can always provide data when the enable signal is asserted. 
This must be ensured by the stream generation before start. 

If the computation of one of the VIs require pipelining, the other paths between Stream 
Generation VI and the OR gate have to be delayed to equalize path latencies. Since the 

mailto:labview.communications@ni.com


LabVIEW Communications 802.11 Application Framework Manual | © National Instruments | 141 

output of the computation usually has a wider bit width than the enable signal, it is 
recommended to add the delay before the computational modules.   

10.2 Protocols 
10.2.1 Event FIFO 
The application framework utilizes a target-to-host FIFO. It is reserved for event 
messages, that are passed between modules on the target. The message must be 
small in size. All information must fit into a 64-bit integer, where eight bits are reserved 
for the event ID. These IDs must be consecutive, unique numbers starting with zero. 

 
Figure 10-2: Event Arbitration on FPGA 

The arbitration of the FIFO events in one clock domain on the FPGA is illustrated in 
Figure 10-2. 

There is an event specific conversion VI that creates an U64 integer from the event 
information and contains the condition for writing an event. If the condition is met, the 
U64 value is written to a local FIFO. This FIFO ensures that there is no loss of events 
because of the arbitration for the target-to-host FIFO. The conversion VI also contains 
the unique ID for this event. It is available on the output of this VI and is part of the U64 
word. 

The local FIFO reference and the event ID are provided to a common Event to FIFO VI 
that must be instantiated once per event. It contains the arbitration logic for the target-
to-host FIFO. The value of the round robin counter is checked against the given event 
ID. If a match is detected, two U64 words are written to the target-to-host FIFO. The 
first word contains the timestamp while the second word is the event data read from 
the local FIFO reference. Since the event IDs are unique, there is only one instance of 
the Event to FIFO VI writing to the FIFO.  

Due to the round robin scheduling and two words per event, the event FIFO throughput 
is limited. The rate for each event must be lower than two times the total number of 
events. Events can appear at a higher rate if the local FIFO is able to store those values. 
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Since the timestamp is added in the Event to FIFO VI, the order of the events in the 
target to host FIFO is not related to the correct order of arrival on the FPGA. One event 
that occurs burstwise needs multiple arbitration rounds to get written to the FIFO. 
These multiple arbitration rounds increase the time difference between arrival and 
timestamp value. 

10.3 Component and Namespace Layout 
With the release of LabVIEW Communications 2.1, all project elements can be 
organized in components, and all VIs can be unequivocally identified by namespaces. A 
component can be assigned easily to one or more targets in SystemDesigner. A 
component must not include any element that is not suited for the target the 
component is assigned to. 

10.3.1 Component Layout 
Because each element of the component should be openable on the target the 
component is assigned to, NI recommends that you separate module implementations 
into one component for FPGA and one for Host code. If Host and FPGA share some 
resources like typedef, create a third component to be used by both the Host and FPGA 
components. 

10.3.2 Namespacing 
Each element of a component receives a namespace which consists of the root 
namespace of the component and an inner component namespace. Note that the folder 
hierarchy of the component maps 1:1 to the inner namespace as shown in Figure 80. 
The namespace layout is independent of the component layout; two components can 
share the same root namespace as shown in Figure 81. 

 
Figure 3 Namespace Hierarchy 

All application frameworks components have AFW as the first level of their namespace. 
AFW is followed by the name of the framework as the second hierarchy level. Elements 
that are shared between several frameworks have AFW:Common as their root 
namespace. The component target, such as FPGA or Host, is never part of the 
namespace. The inner namespace corresponds to the functional split inside the 
component. 
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Figure 4 Connection between Namespaces, Components and Folder Layout on Disk 

10.3.3 Extension of the Framework 
To prevent conflicts with current and future versions of the framework, choose a root 
namespace that does not start with AFW. 

To ease integration with future versions of the frameworks, keep the framework 
components untouched and put new VIs into separate components. 

10.4 Viterbi Decoder 
The Viterbi decoder core is capable of handling convolutional decoding for the IEEE 
802.11 standard as well as for the control channel of the LTE standard. This can be 
configured through the operation mode interface. 

The IEEE 802.11 standard defines convolutional encoding as forward-error correction 
coding in all transmission fields. The corresponding receiver in the application 
framework uses a Viterbi decoder implementing the maximum likelihood sequence 
estimation (MLSE) algorithm based on softbit input. A rate ½ convolutional code with a 
constraint length of 7 and the code polynomials [133, 171] is used. It is terminated with 
a sequence of zeros to reset the encoder to the all zero state after encoding. 
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10.4.1 Design Considerations 
For the application framework, the Viterbi implementation must enable a throughput of 
180 Mbit/s at a clock rate of 250 MHz. Additionally, the latency of the block must be 
less than 2 µs to meet the SIFS timing. In the IEEE 802.11 standard, the code blocks of 
signal fields are very short compared to the large data field code blocks. 

10.4.2 Operation Principle 
The Viterbi decoder consists of the three modules: branch metric computation, path 
metric accumulation & survivor selection, and traceback handling for actual decoding, as 
shown in Figure 10-3. 

 
Figure 10-5: Viterbi Operation Principle 

In the branch metric computation, the received softbits are multiplied by the 
hypotheses to form the state transition metric. This branch metric is used to update the 
path metric of all 64 states and calculate the surviving path. The corresponding Boolean 
bit value is stored in the traceback memory. After a certain amount of iterations—the 
traceback length—the maximum path metric is determined, and from its state the 
traceback memory is evaluated backward to decode bits in history along the most likely 
path in the Trellis. 

The metric computation is running in a streaming mode and fills the traceback buffer 
continuously, but the actual decoding with evaluation of the traceback memory is 
initiated only every traceback length time instances. Hence, it is necessary to flush the 
metric computation with artificial softbits to enable traceback evaluation and decoding 
for the last bits of a code block, as well. 

10.4.3 Viterbi Decoder Interface 
The Viterbi core is capable of handling one bit per clock cycle. There is no handshaking 
implemented in the direction of upstream and downstream modules. The modules 
must be capable of handling continuous data streaming. The input valid and output valid 
signals are used to indicate valid samples.  

The data bit? flag is aligned to the data. This Boolean is not used by the core but is 
delayed parallel to the processing. It can be used to distinguish data bits and flushing 
bits, which are required to decode the last bits of the code block. 

The incoming data shall be given as Log-likelihood Ratios as defined in Equation 10-1. 
Based on the code rate, two code bit inputs (code bit 0 and code bit 1) must be used. 
The third code bit input (code bit 2) remains unused for rate 1/3 convolutional coding in 
the application framework. (However, it is used for LabVIEW Communications LTE 
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Application Framework.) The fixed-point format is FXP4.1. Based on the quotient a 
strong probability for a transmitted symbol 𝑢𝑢𝑘𝑘 = 0 is mapped to 7.5. The strong 
probability towards a transmitted symbol 𝑢𝑢𝑘𝑘 = 1 is mapped to -8. In case of puncturing, 
zero represents the maximum uncertainty. 

𝐿𝐿𝐿𝐿𝑅𝑅(𝑦𝑦𝑘𝑘) ≜ ln�
𝑃𝑃(𝑦𝑦𝑘𝑘 | 𝑢𝑢𝑘𝑘 = 0)
𝑃𝑃(𝑦𝑦𝑘𝑘| 𝑢𝑢𝑘𝑘 = 1)� 

Equation 10-1: Log-Likelihood Ratios 

The output of decoded bits is given as a Boolean. The mapping from Booleans to 
symbols is done such that a false equals 1 and true equals -1 (see Equation 10-2). 

𝑥𝑥 = 1 − 2𝑢𝑢𝑘𝑘  

Equation 10-2: BPSK Mapping 

The operation mode must be set to constant 802.11 to work within the application 
framework. The traceback length defines the minimum number of states the Trellis is 
continued before decoding the current state. The valid range is 1 to 127. This value 
must be set to a constant as well. 

10.4.4 Viterbi Decoder Implementation 
The block diagram of the implementation is illustrated in Figure 10-4.  

 
Figure 10-6: Viterbi Block Diagram 

The branch metric computation is implemented with simple sign changes and additions. 
This submodule has an application framework-specific implementation corresponding to 
the code rate. For the application framework, only code bit 0 and 1 are used since the 
encoder has code rate 1/2. Code bit 2 is ignored. Hence, the output of the branch metric 
computation yields 4 valid values only. The subsequent modules are independent of the 
code rate. 

In the path metric computation, often named Add-Compare-Select in literature, for every 
state from the 64 states, the path metric values of the two preceding states are 
updated with the corresponding branch metrics and the larger value of the resulting 
values is stored as the new path metric for this state. At the same time, the result of 
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the comparison is stored as a Boolean value to mark the more likely state transition of 
the surviving path. The outputs of the submodule are a new 64-element vector of path 
metrics and a 64-element Boolean vector of survivor paths for every bit vector input. 

The operation mode selector is used to set the appropriate initial value of path metrics 
and the correct selection of the branch metric element for the state transition (one out 
of the valid four). Since the IEEE 802.11 standard defines Trellis termination with zeros, 
the start vector of path metrics gives a competitive edge for the zero state over all other 
states. 

The path metric computation submodule does not have a reset. Thus, at the end of a 
code block, the path metric memory must be similar to the described start vector to 
allow continuity of code block handling. This is achieved by flushing appropriate softbits 
(see Section 10.4.2). For the application framework, Trellis termination softbits 
representing a high probability of transmitted zeros are flushed (also known as strong 
zeros). If the path metric vector does not already have the highest value for state 0, 
flushing will take care of it. 

Normalization of the path metric values is used to avoid infinitively growing values and 
restrict the bitwidth. Since only the difference between path metrics is of interest and 
not their absolute value, normalization does not influence the decoding result. The 
process is stretched to two clock cycles. In the first clock cycle, all path metric values 
are checked versus a threshold before they are written to a memory. In the second 
clock cycle based on the threshold comparison, a constant value is subtracted from the 
branch metric prior to updating the path metrics. 

The survivor path is written to two traceback memories. After traceback length 
samples, one of the two traceback paths is triggered. The most probable state at this 
point is the one with the largest path metric value. Its index is provided by the Find Best 
State module. Starting from this state, the Traceback Calculation module recursively 
calculates the previous state based on the survivor path vectors from the traceback 
memory. The decoded bit is derived from the LSB of this survivor state. 

It is worth mentioning that the first decoded bits of the survivor path show lower 
reliability than later elements in the traceback. Thus, the first half of the bits is 
discarded. The order of the remaining decoded bits must be reversed because the 
traceback memory is evaluated backwards. Both operations are done in the Bit 
Reordering module. 

In the last step, the outputs of the two traceback chains are combined to a final 
decoded sequence, which is available on the output. 

10.4.5 Viterbi Decoder Timing 
The timing of the Viterbi decoder is shown in Figure 10-5. It is independent of the 
chosen operation mode but it depends on the traceback length. As described in Section 
10.4.4, there are two traceback chains which are illustrated in different colors. The 
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horizontal axis represents the time. A scale with multiples of traceback length clock 
cycles is visible on the top as a reference. The timing diagram assumes that there is a 
valid input in each clock cycle. The traceback memory is empty at the beginning. 

 
Figure 10-7: Viterbi Timing 

All input data is processed in the branch and path metric calculation. This calculation 
adds two cycles of latency before storing the data to the traceback memory. The first 
traceback memory is read as soon as two times traceback samples are written. The 
second traceback chains starts another traceback samples delayed. The Traceback 
Calculation module just adds one cycle of latency. At the output of the Bit Reordering 
module, only the second half of the samples is declared as valid after two times 
traceback length elements have been written. The outputs of both traceback chains are 
combined to a continuous output stream. 

If the input is not valid at each clock cycle, the input pattern is kept until the traceback 
memory input. Afterwards, the traceback decoding and bit reordering are performed 
burst wise. In this case, the latency of every wait cycle on the input will increase the 
latency for the first code block input by one cycle. NI recommends flushing the Viterbi 
core with a continuous stream to have the minimum latency for the end of the code 
block. 

This concept results in a decoding latency of four times the traceback length (plus 13 
clock cycles processing time). During two times the traceback length of the traceback 
buffer is written, and during another two traceback lengths the evaluation and decoding 
take place. The evaluation in chunks of two times the traceback length makes it 
necessary to flush the Viterbi decoder with the same number of input softbit triples. 
The latency of each module is summarized in Figure 10-6.  
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Figure 10-8: Viterbi Latency 

10.4.6 Resource Usage 
The Viterbi implementation occupies the FPGA resources listed in Table 10-1. 

Operation mode 802.11 
LUTs 4189 
Registers 1990 
Block Ram (36k) 2 

Table 10-1: Viterbi Resource Usage 

10.4.7 Viterbi Decoder Throughput  
The throughput in MS/s is equal to the clock rate in MHz since the core is capable of 
handling one sample per each clock cycle. Synthesis of the core is successful up to a 
clock rate of 300 MHz. 

11 Abbreviations 
Abbreviation Meaning 
ACK Acknowledgement 
ADC Analog digital converter 
AGC Automatic gain control 
A-MPDU Aggregated MPDU 
BCC Binary convolutionally encoded 
BPSK Binary phase-shift keying 
BSSID Basic service set identifier 
CCA Clear channel assessment 
CP Cyclic prefix 
CS Carrier sensing 
CSMA/CA Carrier sense multiple access with collision avoidance 
CTS Clear-to-send 
CW Continuous wave 
DA Destination address 
DAC Digital analog converter 
DCF Distributed coordination function 
DDC Digital downconversion 
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DIFS Distributed (coordination function) interframe space 
DUC Digital upconversion 
EDSC Enable driven stream combiner 
EIFS Extended interframe space 
EOF End of file 
EVM Error vector magnitude 
FAM Frontend adapter module (RF module) 
FCS  Frame check sequence 
FFT Fast Fourier transform 
FSM Finite state machine 
FXP Fixed point 
GI Guard interval 
H2T Host-to-target 
HCF Hybrid coordination function 
I/Q In-phase/quadrature 
ICP Interface communication protocol 
IFS Inter frame spacing 
L-DATA Legacy data 
LFSR Linear feedback shift register 
LLR Log-likelihood ratio 
L-LTF Legacy long training field 
LRC Long retransmission counter 
L-SIG Legacy signal field 
LUT Look-up table 
MAC Medium access control layer 
MCF Mesh coordination function 
MCS Modulation and coding scheme 
MIMO Multiple-input, multiple-output 
MLSE Maximum likelihood sequence estimation 
MMPDU MAC management protocol data unit 
MPDU MAC protocol data unit 
MSB Most significant bit 
MSDU MAC service data unit 
NAV Network allocation vector 
NDP Null data packet 
FDM Orthogonal frequency-division multiplexing 
OTA Over-the-air 
PCF Point coordination function 
PHY Physical layer 
PIFS Pointt (coordination function) interframe space 
PLCP PHY layer convergence protocol 
PN Pseudo noise 
PPDU PLCP protocol data unit 
QAM Quadrature amplitude modulation 
RA Receiver address 
RC Receiver cache 
RTS Request-to-send 
RX Receive 
SA Source address 
SAP Service access point 
SDR Software-defined radio 
SIFS Short interframe space 
SISO Single input, single output 
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SLRC STA LRC 
SNS Sequence number space 
SRC Short retransmission counter 
SSRC STA SRC 
STA Station 
T2H Target-to-host 
TA Transmitter address 
TX Transmit 
UDP User datagram protocol 
VHT Very high throughput 
VHT-LTF VHT legacy long training field 
VHT-SIG-A VHT signal field A 
VHT-SIG-B VHT signal field B 
VHT-STF VHT signal training field 
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