Register Map and Descriptions

Register Name	Offset A	ddress	Туре	Size	
	Hex	Decimal			
Misc Register Group					
Serial Command	0D	13	Write-only	8-bit	
Misc Command	0F	15	Write-only	8-bit	
Magic	19	25	Write-Only	8-bit	
Status	01	1	Read-only	8-bit	
Calibration Channel Select	1A	26	Write-only	16-bit	
Analog Input Register Group					
ADC FIFO Data Register	1C	28	Read-only	32-bit	
Configuration Memory Low	10	16	Write-only	16-bit	
Configuration Memory High	12	18	Write-only	16-bit	
AI FIFO Offset Load	5	5	Read-only	8-bit	
Analog Output Register Group					
AO Configuration (NOT SUPTED)	16	22	Write-only	16-bit	
DAC FIFO Data	14	20	Write-only	32-bit	
AO Window addr Register	18	24	Write-Only	16-bit	
AO Window Data Register	1E	30	Write-Only	16-bit	
DAC0 Direct Data	W(0-F)	W(0-15)	Write-only	16-bit	
AO Update time	W 10	W16	Write-only	16-bit	
AO Update Imm	W 11	W17	Write-only	16-bit	
AO FIFO Offset Load	W 13	W19	Write-only	16-bit	
AO later internal	W 14	W20	Write-only	16-bit	
AO WG Register	W 15	W21	Write-only	16-bit	
AO Misc Register	W 16	W22	Write-only	16-bit	
Cal Gain Select Register	05	5	Write-only	8-bit	
AI AO Select	09	9	Write-only	8-bit	
G0 G1 Select	0B	11	Write-only	8-bit	
DAQ-STC Register Group					
Window Address	0	0	Read-and-write	16-bit	
Window Data	2	2	Read-and-write	16-bit	
Interrupt A Acknowledge	4	4	Write	16-bit	
Interrupt B Acknowledge	6	6	Write	16-bit	
AI Command 2	8	8	Write	16-bit	
AO Command 2	А	10	Write	16-bit	
G0 Command	С	12	Write	16-bit	
G1 Command	Е	14	Write	16-bit	
AI Status 1	2	2	Read	16-bit	
AO Status 1	4	4	Read	16-bit	
G Status	6	6	Read	16-bit	
AI Status 2	8	8	Read	16-bit	
AO Status 2	А	10	Read	16-bit	
DIO Parallel Input	С	12	Read	16-bit	

Table 3-1. PCI-6110E Register Map

Serial Command Register

The Serial Command Register control the PCI-6110E serial EEPROM and DACs. The contents of this register are cleared upon power up and after a reset condition.

Address:	Base address + 0D (hex)
Type:	Write-only
Word Size:	8-bit
Bit Map:	

_	7	6	5	4	3	2	1	0
	Reserved	Reserved	Reserved	SerDacLd1	SerDacLd0	EEPromCS	SerData	SerClk

Bit	Name	Description
7–5	Reserved	Reserved—Always write 0 to these bits.
4	SerDacLd1	Serial DAC Load1—This bit is used to load the second set of serial DACs with the serial data previously shifted into the DACs
3	SerDacLd0	Serial DAC Load0—This bit is used to load the first set of serial DACs with the serial data previously shifted into the DACs.
2	EEPromCS	EEPROM Chip Select—This bit controls the chip select of the onboard EEPROM used to store calibration constants. When EEPromCS is set, the chip select signal to the EEPROM is enabled.
1	SerData	Serial Data—This bit is the data for the onboard serial devices—the calibration EEPROM and the serial DACs. This bit should be set to the desired value prior to the active write to the SerClk bit.
0	SerClk	Serial Clock—This bit is the clock input to the two onboard serial devices. In order to write to these devices, this bit should be set first to 0 and then to 1. The data in the SerData bit will be written to the devices on the low-to-high transition of the serial clock.

Misc Command Register

The Misc Command Register contains one bit that controls the PCI-6110E analog trigger source. The contents of this register are cleared upon power up and after a reset condition.

Address:Base address + 0F (hex)Type:Write-onlyWord Size:8-bitBit Map:

 7	6	5	4	3	2	1	0
nt/Ext Trig	Trig1 AC/DC	Reserved	ATRIG1	ATRIG0	SCXI Enable	PFI7 DIR	LW FIFOEN

Bit	Name	Description
7	Int/Ext Trig	Internal/External Analog Trigger—This bit controls the analog trigger source. If this bit is set, the output of the amplifier is selected as the trigger source. If this

		bit is cleared, the TRIG1 signal from the I/O connector is selected as the trigger source.
6	Trig1 AC/DC	Trig1 AC/DC coupling bit - If this bit is set then AC coupling is enabled for the external analog trigger. If this bit is cleared DC coupling is selected.
5	Reserved	Reserved—Always write 0 to these bits.
4	ATRIG1	Analog Trigger 1 select - This bit controls which analog channel is used for the analog trigger.
3	ATRIG0	Analog Trigger 0 select - This bit controls which analog channel is used for the analog trigger.
ATRIG1 0 0 1 1	ATRIG0 0 1 0 1	Selected Channel CH0 CH1 CH2 CH3
2	SCXI Enable	SCXI Enable - Write a 1 to this bit to enable SCXI operation. This effectively pulse extends the ScanClk and EXTGATECONV signals to meet SCXI requirements. Write a 0 this bit to enable flow through mode for those signals.
1	PFI7 DIR	PFI7 Dir bit - Write a 1 to this bit to make PFI7 an output, write a 0 to this bit to make PFI7 and input.
0	LW FIFOEN	Low Word FIFO Enable- This bit enable low word only FIFO writes. If this bit is set, only the low word FIFO gets data stored in it, if this bit is cleared both FIFOs are used.

Magic Register

The Magic Register contains misc bits to select different options for the PCI-611xE circuitry. The contents of this register are cleared upon power up and after a reset condition.

Address:	Base address + 19 (hex)
Type:	Write-only
Word Size:	8-bit
Bit Map:	

7	6	5	4	3	2	1	0
Reserved	Overrun Enable						

Bit	Name	Description
7-1	Reserved	Reserved—Always write 0 to these bits.
0	Overrun Enable	Overrun Detection Enable bit - Write a 1 to this bit to turn off the overrun detection circuitry. This is useful if a user wants to run the board >5 MHZ so error interrupts (ie Overflow) can still be enabled in the DAQ-STC.

Status Register

The Status Register is used to indicate the status of various PCI-6110E resources..

Address:Base address + 01 (hex)Type:Read-onlyWord Size:8-bitBit Map:

7	6	5	4	3	2	1	0
AILWEF*	Temp OUT	AO PFF	Reserved	Reserved	Reserved	Reserved	PROMOUT

Bit	Name	Description
7	AILWEF	AI Low Word Empty Flag - This bit indicated the status of the Empty flag for the AI Low Word FIFO. This bit is low if the LW FIFO is empty, high if data is present.
6	Temp OUT	Temperature Out - This bit reflects the serial output data from the temperature sensor.
5	AO PFF	AO Programmable Full Flag - This bit reflects the status of the AO programmable full flag. If this bit is set, the AO FIFO has (full - AO offset value) points or less stored in it.
4–1	Reserved	Reserved
0	PROMOUT	EEPROM Output Data—This bit reflects the serial output data of the serial EEPROM.

Cal Gain Select Register

The Cal Gain Select Register is used to calibrate the board on a per gain basis.

Address:	Base address $+ 5$ (hex)
Type:	Write-only
Word Size:	8-bit
Bit Map:	

7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

Bit	Name	Description
7-0	D[7:0]	Data lines 7-

Data lines 7-0 - See table below to determine which values to write to calibrate at respective gains. The N1 value corresponds to the value which should be written to this register.

Input Range		Gain	N1	N2	Expected voltage
	50	0.2	256	0	10.000000
	20	0.5	256	0	10.000000
	10	1	256	0	10.000000
	5	2	249	7	9.453125
	2	5	176	80	3.750000

1	10	152	104	1.875000
0.5	20	139	117	0.859375
0.2	50	132	124	0.312500

Calibration Channel Select Register

This register select which of the AI channels is to be calibrated.

Address:	Base address $+ 28(hex)$
Type:	Write-only
Word Size:	16-bit
Bit Map:	

15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	CAL SEL1	CAL SEL0

Bit	Name	Description
15-2	Reserved	D<152> - Always Write 0
1	Cal Sel1	Calibration Select 1 - This bit selects the channel for calibration See table
0	Cal Sel0	Calibration Select 0 - This bit selects the channel for calibration See table
Cal Sel1 0 0 1 1	Cal Sel0 0 1 0 1	Selected Channel CH0 CH1 CH2 CH3

Analog Input Register Group

ADC FIFO Data Register

The ADC FIFO Data Register returns the two oldest ADC conversion value stored in the ADC FIFO. Reading the ADC FIFO removes 2 values and leaves space for another ADC conversion value to be stored. Values are shifted into the ADC FIFO whenever an ADC conversion is complete.

The ADC FIFO is emptied when all values it contains are read. The empty, half-full, and full flags from the ADC data FIFO are available in a status register in the DAQ-STC. These flags indicate when the FIFO (32-bit) is empty, half-full, or full, respectively. Whenever the FIFO is not empty, the stored data can be read from the ADC FIFO Data register.

The values returned by reading the ADC Data Register are in two's complement binary, which generates both positive and negative numbers. Following is the bit pattern returned:

* To read the low word FIFO only, perform a 32 bit read from this register and discard the upper 16 bits.

Address:	Base address + 1C (hex)
Type:	Read-only
Word Size:	32-bit
Bit Map:	

31	30	29	28	27	26	25	24
D31	D30	D29	D28	D27	D26	D25	D24
22	22		•	10	10	17	17
23	22	21	20	19	18	17	16
D23	D22	D21	D20	D19	D18	D17	D16
15	14	13	12	11	10	9	8
D15	D14	D13	D12	D11	D10	D9	D8
7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

Bit	Name	Description
31–16	D<3116>	Data bits 31 through 16—These bits are the result of the ADC conversion stored in the high word FIFO. The boards with a 12-bit ADC will return values ranging from -2,048 to 2,047 decimal (0xF800 to 0x07FF).
15–0	D<150>	Data bits 31 through 16—These bits are the result of the ADC conversion stored in the low word FIFO. The boards with a 12-bit ADC will return values ranging from -2,048 to 2,047 decimal (0xF800 to 0x07FF).

Configuration Memory Low Register

The Configuration Memory Low Register works with the Configuration Memory High Register to control the input channel selection multiplexers, gain, range, and mode settings. The values written to these registers are placed into the Configuration Memory, which is sequenced through during an acquisition. This register contains seven of these bits. The contents of the Configuration Memory are emptied by a control register in the DAQ-STC.

Address:	Base address $+ 10$ (hex)
Type:	Write-only
Word Size:	16-bit
Bit Map:	

_	15	14	13	12	11	10	9	8
	LastChan	Reserved	Reserved	GenTrig	Reserved	Reserved	DitherEn	Unip/Bip
_								
	7	6	5	4	3	2	1	0
	Reserved	Reserved	Reserved	Reserved	Gain3	Gain2	Gain1	Gain0

Bit	Name	Description
15–10, 8–2	Reserved	Reserved—Always write 0 to these bits.

3-0 Gain<3..0> Channel Gain Select 3 through 0—These three bits control the gain settings of the input PGIA for the selected analog channel. The following gains can be selected on the PCI-SMIO-5M:

Gain<30>	Range	Actual Gain
1001	±100	0.1
1010	±50	0.2
1011	±20	0.5
0001	±10	1
0010	±5	2
0011	±2	5
0100	±1	10
0101	± 0.5	20
0110	± 0.2	50
0111	NA	NA

Table 3-3. PGIA Gain Selection

*Not supported on the PCI-6110E

Configuration Memory High Register

The Configuration Memory High Register works with the Configuration Memory Low Register to control the input channel selection multiplexers, gain, range, and mode settings. This register contains nine of these bits. The contents of this register are cleared by a control register in the DAQ-STC.

Address:Base address + 12 (hex)Type:Write-onlyWord Size:16-bitBit Map:

15	14	13	12	11	10	9	8
Reserved	Reserved	Reserved	ChanType0	AC/DC*	Reserved	Reserved	Reserved
7	6	5	4	3	2	1	0
Reserved	Reserved	Bank1	Bank0	Chan3	Chan2	Chan1	Chan0

Bit	Name	Description
15-13, 10–3	Reserved	Reserved—Always write 0 to these bits.
12	ChanType0	Channel Type 0—This bit indicates which type of resource is active for the selected channel. Writing a 1 selects DIFF mode, a 0 selects calibration.
11	AC/DC*	AC/DC Coupling - Writing a 1 to this bit selects AC coupling for the channel, a 0 selects DC coupling. Board powers up with DC coupling enabled.
2–0	Chan<20>	Channel Select 2 through 0 —These bits indicate which channel is active for the current resource.
		Table 3-4. Calibration Channel Assignments

	Type<20> = CAL					
Chan<30>	PGIA(+)	PGIA(-)	Purpose			
0000	AOGND*	AOGND*	ADC Offset			
0001	AOGND	AIGND	Ground Differential			
0010	DACOOUT	AOGND	DAC 0 Offset/Linearity			
0011	DAC1OUT	AOGND	DAC 1 Offset/Linearity			
0100	REF5V*	REF5V*	ADC Offset			
0001	REF5V	AI GND	ADC Gain			
0110	DAC0OUT	REF5V	DAC 0 Gain			
0111	DAC10UT	REF5V	DAC 1 Gain			
1xxx	Reserved	Reserved	—			

* AIGND on the AT-MIO-16XE-50

Table 3-5.	Differential Channel Assignments	
------------	----------------------------------	--

Type<20> = DIFF					
Chan<30>	PGIA(+)	PGIA(-)			
0000	ACh0+	ACH0-			
0001	ACh1+	ACh1-			
0010	ACh2+	ACh2-			
0011	ACh3+	ACh3-			
0100	Reserved	Reserved			
0001	Reserved	Reserved			
0110	Reserved	Reserved			
0111	Reserved	Reserved			
1xxx	Reserved	Reserved			

AI FIFO Offset Load Register

The AI FIFO Offset Load Register sets the depth for the Programmable Empty Flag. This controls when DMA transfers use burst or wait state protocol. This is a strobe register the offset value is set in hardware.

Address: Type: Word Size: Bit Map:	Base addres Read-only 8-bit	ss + 3 (hex)					
7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

Bit

Description

7–0 D<7..0>

Data bits 7 through 0— Don't Care

Analog Output Register Group

Name

DAC FIFO Data Register

The DAC FIFO Data Register is used to load the desired data into the DAC data FIFO.

The empty, half-full, and full flags from the DAC data FIFO are available in a status register in the DAQ-STC. These flags indicate when the FIFO is empty, half-full, or full, respectively. Whenever the FIFO is not full the host is free to write additional data.

Address:	Base address + 14 (hex)
Type:	Write-only
Word Size:	32-bit
Bit Map:	

31	30	29	28	27	26	25	24
D31	D30	D29	D28	D27	D26	D25	D24
23	22	21	20	19	18	17	16
D23	D22	D21	D20	D19	D18	D17	D16
15	14	13	12	11	10	9	8
D15	D14	D13	D12	D11	D10	D9	D8
7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

Bit	Name	Description
31–0	D<310>	Data bits 31 through 0 —The 32-bit data to be written to the DAC data FIFO. This data is interpreted in straight binary form.

DAC0 Direct Data Register

The DAC0 Direct Data Register loads the desired data directly into DAC0, without using the DAC data FIFO.

Address:	Window address + 00 (hex)
Type:	Write-only
Word Size:	16-bit
Bit Map:	

15	14	13	12	11	10	9	8
D15	D14	D13	D12	D11	D10	D9	D8
7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

Bit	Name	Description
15–0	D<15:0>	Data bits 15 through 0—The 16-bit data to be written to DAC0, itself. This data is interpreted in <u>straight binary</u> form.

DAC1 Direct Data Register

The DAC1 Direct Data Register loads the desired data directly into DAC1, without using the DAC data FIFO.

Address:Window address + 01 (hex)Type:Write-only

Word Size: 16-bit Bit Map:

15	14	13	12	11	10	9	8
D15	D14	D13	D12	D11	D10	D9	D8
7	6	5	4	3	2	1	0
7 D7	6 D6	5 D5	4 D4	3 D3	2 D2	1 D1	0 D0

Bit	Name	Description
15–0	D<15:0>	Data bits 15 through 0—The 16-bit data to be written to DAC1 itself. This data is interpreted in <u>straight binary</u> form.

AO FIFO Offset Load Register

The AO FIFO Offset Load Register sets the depth for the Programmable Full Flag. This controls when DMA transfers use burst or wait state protocol. This register must be written after every DAC FIFO clear. The value 0x06 should be written unless a programmable FIFO depth is being used.

Address: Window address + 13 (hex)

Type: Write-only

Word Size: 32-bit

Bit Map:

31	30	29	28	27	26	25	24
D31	D30	D29	D28	D27	D26	D25	D24
23	22	21	20	19	18	17	16
 D23	D22	21 D21	20 D20	19 D19	10 D18	D17	10 D16
15	14	13	12	11	10	9	8
D15	D14	D13	D12	D11	D10	D9	D8
_	-	_			•	_	0
7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

Bit	Name	Description
31–0	D<310>	Data bits 31 through 0 —These bits set the point at which the programmable full flag is set.

AO Timed Register

The AO Timed register is used to configure each DAC for timed update. The DAC's power on in immediate mode.

Address:Window address + 10 (hex)Type:Write-onlyWord Size:16-bitBit Map:

15	14	13	12	11	10	9	8
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
		_			_		
7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	DAC1 TIMED	DAC0 TIMED
Bit	Name	Descrip	otion				
15–2	D<15:2>	Data bit	s 15 through 2	- Reserved, w	rite 0 at all tim	es	
1	DAC1 Timed	DAC1 Timed select - Write a 1 to this bit to configure DAC1 for Timed update Write a 1 to this bit in the AO Immediate register to configure DAC1 for Immediate Update.					
0	DAC0 Timed	DAC0 Timed select - Write a 1 to this bit to configure DAC0 for Timed upda Write a 1 to this bit in the AO Immediate register to configure DAC0 for Immediate Update.					

AO Immediate Register

The AO Immediate register is used to configure each DAC for immediate update.

Address:	Window address + 11 (hex)
Type:	Write-only
Word Size:	16-bit
Bit Map:	

_	15	14	13	12	11	10	9	8
	Reserved							
	7	6	5	1	3	2	1	Ο

/	0	5	4	5	2	1	0
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	DAC1	DAC0
						Immed	Immed

Bit	Name	Description
15–2	D<15:2>	Data bits 15 through 2 - Reserved, write 0 at all times
1	DAC1 IM	DAC1 Immediate select - Write a 1 to this bit to configure DAC1 for Immediate update. Write a 1 to this bit in the AO Timed register to configure DAC1 for Timed Update.
0	DAC0 IM	DAC0 Immediate select - Write a 1 to this bit to configure DAC0 for Immediate update. Write a 1 to this bit in the AO Timed register to configure DAC0 for Timed Update.

Later Single Point Updates

The Later Single Point Updates register is used configure a DAC so it will receive the timed update pulses at all times. This means the DAC will always receive the Update pulse whether its included in the WG or not. Unlike,

just writing the DAC to the WG Register, in that case after the WG is done and the WG clr register is written those DAC's will no longer receive the update pulse since they have bad points in their buffers.

Address:	Window address + 14 (hex)
Type:	Write-only
Word Size:	16-bit
Bit Map:	

	15	14	13	12	11	10	9	8
	Reserved							
_								
	7	6	5	4	3	2	1	0

/	0	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	DAC1	DAC0
						Later	Later
						Enable	enable

Bit	Name	Description
15–2	D<15:2>	Data bits 15 through 2 - Reserved, write 0 at all times
1	DAC1 Later	DAC1 Later select - Write a 1 to this bit to place DAC1 into Later Mode and enable WG. Write a 0 to this bit to remove DAC1 from Later Mode.
0	DAC0 Later	DAC0 Later select - Write a 1 to this bit to place DAC0 into Later Mode and enable WG. Write a 0 to this bit to remove DAC0 from Later Mode.

AO Waveform Generation Register

The AO Waveform generation Register is used to place the DAC into Waveform Generation Mode. This register is used to determine which DACs participate in the WG operation and the order in which they are written. The first DAC written to this register will be the first DAC written during WG.

Address:	Window address + 15 (hex)
Туре:	Write-only
Word Size:	16-bit
Bit Map:	

	15	14	13	12	11	10	9	8
	Reserved							
-								
	7	6	5	4	3	2	1	0
	Reserved	Dacnum0						

Bit	Name	Description	
15–1	D<15:2>	Data bits 15 t	through 2 - Reserved, write 0 at all times
0	Dacnum0	DAC0 WG se	elect 0 - This bit controls which DACs participate in WG
		Dacnum0 0 1	Dac Participating 0 1

AO Misc Register

The AO Misc Register is used for a variety of AO operations. The WG Clr Strobe bit should be written at the end of a WG operation.

Address:	Window address + 16 (hex)
Type:	Write-only
Word Size:	16-bit
Bit Map:	

15	14	13	12	11	10	9	8
Reserv	ed Reserve	d Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
7	6	5	4	3	2	1	0
7 Reserv	ed Reserve	5 ed Reserved	4 Reserved	3 Reserved	2 Reserved	1 AOPFF	0 WG CLR

Bit	Name	Description
15–2	D<15:0>	Data bits 15 through 2 - Reserved, write 0 at all times
1	AOPFF INTEN	AOPFF Interrupt Enable - If this bit is set and interrupt is generated if the AOPFF bit in Status Register is set. Service this interrupt by writing data to the AO FIFO.
0	WG CLR STRB	Waveform Generation Clear Strobe - Write a 1 to this bit to clear all DACs from waveform generation (unless in later single point mode). This bit should always be written at the conclusion of a WG operation.

DMA Control Register Group

AI AO Select Register

The AI AO Select Register select the DMA channel used for Analog Output and Analog Input. The contents of this register are cleared upon power up and after a reset condition.

Address:	Base address $+$ 09 (hex)
Type:	Write-only
Word Size:	8-bit
Bit Map:	

7	6	5	4	3	2	1	0
AO CHD	AO CHC	AO CHB	AO CHA	AI CHD	AI CHC	AI CHB	AI CHA

Bit	Name	Description
7–4	AO CH <da></da>	Analog Output DMA Channel D through A—These bits select the DMA channels to be used by analog output. These bits must be set prior to enabling the channel.
3–0	AI CH <da></da>	Analog Input DMA Channel D through A—These bits select the DMA channel to be used by analog input. These bits must be set prior to enabling the channel.

G0 G1 Select Register

The G0 G1 Select Register select the DMA channel used by the General Purpose Counters. The contents of this register are cleared upon power up and after a reset condition.

Address:	Base address + 0B (hex)
Type:	Write-only
Word Size:	8-bit
Bit Map:	

7 6 5 4 3 2 1 0 **GP1 CHD GP1 CHC GP1 CHB GP1 CHA** GP0 CHD **GP0 CHC** GP0 CHB GP0 CHA

Bit	Name	Description
7–4	GP1 CH <da></da>	General Purpose Counter Timer 1 DMA Channel D through A—These bits select the DMA channel that the GPCT1 uses. These bits must be set prior to enabling the DMA channel.
3–0	GP0 CH <da></da>	General Purpose Counter Timer 0 DMA Channel D through A—These bits select the DMA channel that the GPCT1 uses. These bits must be set prior to enabling the logical channels.