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Introduction 
 

Robotics and automation are becoming an essential component of engineering and scientific 

systems and consequently they are very important topics for study by engineering and science 

students. Furthermore, robotics is built on fundamentals like transducer characterization, motor 

control, data acquisition, mechanics of drive trains, network communication, computer vision, 

pattern recognition, kinematics, path planning, and others that are also fundamental to other 

fields, manufacturing, for instance.  Learning these fundamentals can be challenging and fun by 

doing experiments with a capable mobile robot.  The National Instruments (NI) LabVIEW 

Robotics Kit and LabVIEW provide an active-learning supplement to traditional robotics 

textbooks and curriculum by providing multiple capabilities in a compact and expandable kit.  

  

National Instruments Corporation, located in Austin Texas, has been providing hardware and 

software that engineers and scientists use to design, prototype, and deploy systems for test, 

control, and embedded applications since 1976. The company has offices in over 40 countries, 

and NI open graphical programming software and modular hardware is used by more than 

30,000 companies annually.  More information is available at http://www.ni.com. 

  

The experiments described herein show how to communicate between a host computer and a 

robot, how robots communicate with sensors to obtain data from the robot's environment, how 

to implement algorithms for localization and planning in LabVIEW software, how the robot 

communicates with actuators to control sensor motion and driving motion, how to implement 

algorithms for controlling sensor and motion. National Instruments LabVIEW is a graphical 

programming environment used by millions of engineers and scientists to develop sophisticated 

measurement, test, and control systems using intuitive graphical icons and wires that resemble 

a flowchart. It facilitates integration with thousands of hardware devices and provides hundreds 

of built-in libraries for advanced analysis and data visualization – all for creating virtual 

instrumentation. The LabVIEW platform is scalable across multiple targets and operating 

systems. 

  

The NI LabVIEW robotics kit includes DaNI: an assembled robot with frame, wheels, drive train, 

motors, transducers, computer, and wiring. The hardware can be studied, reverse engineered, 

and modified by students.  However, the major focus of the experiments is robot perception and 

control fundamentals that are implemented in LabVIEW software developed on a remote host 

computer and downloaded to the robot computer.  To accomplish this goal, the experiments 

teach robotics fundamentals and LabVIEW programming simultaneously.  The experiments are 

organized into subject matter areas, each containing introductory sections entitled Instructor’s 

Notes, Goal, Required Components, and Background.  These sections serve as a preview of 

the material and provide the requisite information. 

 

There are several texts available that explain LabVIEW programming and several that explain 

robotics fundamentals.  This document integrates the two with experiments in robotics with 

LabVIEW and DaNI.  The experiments do not repeat the fundamental and theoretical material in 

http://www.ni.com/
http://www.ni.com/
http://www.ni.com/
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http://www.ni.com/
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traditional introduction to robotics texts and courses.  Rather, they help students discover 

robotics concepts in an active learning environment and show students how to implement 

robotics fundamentals.  The robotics fundamentals for the experiments were drawn from 

Introduction to Autonomous Mobile Robots, 2nd edition, by Roland Siegwart, Illah R. 

Nourbakhsh, and Davide Scaramuzza 2011, ISBN 978-0-262-01535-6 hereafter referred to as 

Siegwart et al (2011). 

 

Previous programming experience is not required to do these experiments.  The experiments 

gradually build programming skills in LabVIEW.  LabVIEW can be a very good first programming 

language as it is graphical, so students will visualize the logic of their programs.   Students will 

use a LabVIEW program written by NI engineers in the first experiment and learn to write a 

simple LabVIEW program in the second experiment.  Further experiments in the series will 

sequentially introduce more sophisticated LabVIEW programming techniques along with more 

sophisticated robotics fundamentals. 

  

DaNI 2.0, the hardware portion of the LabVIEW Robotics Starter Kit that is used in these 

experiments, is an out-of-the-box mobile robot platform with sensors, motors, and an NI 9632 

Single-Board Reconfigurable I/O (sbRIO) computer mounted on top of a Pitsco TETRIX erector 

robot base as shown in Figure 0-1.  

 

 

 
 

Figure 0-1 DaNI 2.0 Main Components 

 

The kit is produced by PITSCO Education who provides kits, teacher guides, and classroom 

tools. More information is available at http://www.pitsco.com. 

  

The NI Single-Board RIO, shown in Figure 0-2, is an embedded deployment platform that 

integrates a real-time processor, reconfigurable field-programmable gate array (FPGA), and 

http://www.pitsco.com/
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analog and digital I/O on a single board. This board is programmable with LabVIEW Real-Time, 

LabVIEW FPGA and LabVIEW Robotics software modules. 

 

  
 

Figure 0-2 The 9632 NI Single-Board RIO includes a real-time processor, FPGA, and built-in 
digital and analog I/O. 

 

The 2.0 starter kit includes ultrasonic and optical encoder sensors,  but the reconfigurable I/O 

capability allows you to expand the kit to experiment with a variety of sensors including:  

 

LIDAR  

Radar  

Infrared  

Compass  

Gyroscopes  

Inertial Measurement Unit  

Global Position System  

Camera (CCD and CMOS)  

 

Refer to ni.com for information about the sbRIO and about connecting these sensors to the 

sbRIO and developing LabVIEW programs to acquire data from and to control them. 

 



 



Experiment 1 – LabVIEW and DaNI 

Instructor’s Notes 

  

This set of experiments was developed with DaNI 2.0, MS Windows 7, and LabVIEW 2011.  

Students will set up the software for DaNI and experiment with a prebuilt program that executes 

a vector field histogram (VFH) obstacle avoidance algorithm based on feedback from the 

included ultrasonic transducer.  Students will study the VFH later in the experiment set.  They 

will just observe the results in this experiment.   

 

It is important that the battery be fully charged before beginning this experiment.  Student 

should carefully read the battery information below so the battery has adequate life for the 

experiments. 

  

This experiment may require students to assemble the robot and load software on a host 

computer unless that has been completed prior to beginning the experiment.  Host computer 

administrator privileges are required to install the software.  A Hardware Wizard is available to 

facilitate network and hardware configuration.  The host computer must be configured for DHCP 

if the Hardware Wizard is used.  If it has a static IP address, it will not be able to use the 

Hardware Wizard to download software.  Instructions are provided in the following to configure 

communications and download software without using the Hardware Wizard but this extends the 

length and difficulty of the experiment.  Even if the Hardware Wizard is used, the instructions for 

configuring without it are educational. 

Goals 

  

Setup and test DaNI and a host computer.  Test the software installation.  Compare 

autonomous and remote control.  Investigate DaNI’s mobility platform.  Introduce the LabVIEW 

project and the roles of development computer and onboard computer in robot software 

development and control.   

 

Required Components 
  

Robotics Starter Kit 2.0 containing instruction sheets, DVD, charger, Ethernet crossover cable, 

and preassembled DaNI robot. 

  



Host computer with Microsoft Windows Operating System.  Administrator access privileges 

required for adding software unless software is preloaded.  The required preloads are: LabVIEW 

and the Robotics, RealTime, and FPGA modules from the kit DVD. 

  

An indoor roaming environment including objects for obstacles (ultrasonic transducer targets) 

like a cardboard boxes, furniture, laptop bag etc. 

  

Linear distance measuring tool like a ruler, meter stick, or tape measure. 

  

Angle measuring tool like a protractor. 

 

A video capture device, smart phone or camera, is useful but not required. 

 

A long (~ 3 m) cat 5 Ethernet cable for network connection or crossover cable for direct host 

connection is useful but not required.  See explanation below for the connection and cable 

options. 

Background 

  

This experiment is meant to be the first in a university engineering or science class.   As such, 

students should have a background in physics.  Little knowledge of robotics or LabVIEW 

programming is required for this first experiment, but if students have studied an introductory 

chapter in a textbook, like Siegwart et al (2011), students will have a better context for the 

material presented.  

  

Additional information about DaNI and NI robotics is available at ni.com/robotics. 

  

Students should study:  the LabVIEW Robotics Starter Kit Safety Guide by navigating to the 

LabVIEW\readme directory on the DVD that is packaged with the kit and opening 

StarterKit_Safety_Guide.pdf 

Experiment 1-1 DaNI Setup 

  

Study the robot components and connections.  Figure 0-1 presents a block diagram of the 

connections to some major components.   

  

The NI Robotics Starter Kit 2.0 contains hardware that requires special caution when you 

unpack, handle, and operate it. Refer to the LabVIEW Robotics Starter Kit Safety Guide for 

important information about protecting yourself from injury and protecting the Starter Kit 

hardware from damage.  Access the LabVIEW Robotics Starter Kit Safety Guide by navigating 

to the LabVIEW\readme directory on the DVD that is packaged with the kit and opening 



StarterKit_Safety_Guide.pdf. You must have Adobe Reader 6.0.1 or later installed to view or 

search the PDF versions of the manual. 

 

 
Figure 0-1. DaNI 2.0 Hardware Component Block Diagram 

 

Turn off the master switch before connecting or disconnecting the charger. Plug in the power as 

shown in Figure 0-2 to charge the battery. The battery must be charged before the robot will 

operate.  Note the location of the ―connector‖ in Figure 0-1 relative to the other components.  

There is no connection available for external power to the motors so the battery is the only 

power source.  The battery takes about 1.7 hours to charge.  If the battery is low, the power 

LED (see Figure 0-3) might flash or not light up, the Ethernet link and activity lights will blink 

periodically in unison and the sensor motor might move unpredictably. Also, if the MOTORS 

switch is on, the drive motors might turn at slower than normal speeds. After the battery is 

charged, disconnect from the charger and connect the battery to the power input cable.  The 

battery charge will last about 1 hour with the motors turned on and about 4 hours with the 

motors turned off.  A switch on the charger can be set to 0.9 A and 1.9 A.  Use the 1.9 A only 

when you need to charge quickly.  Otherwise use the 0.9 A setting.  Do not leave DaNI sitting 

with the master switch on.  When not in use such as when developing software, turn off the 

master switch and place the robot on charge so the battery will be charged before software 

testing. 

 



The above practice requires frequent charger connections.  Always grab the plastic connector 

cover when disconnecting and connecting as shown in Figure 0-2.  Do not pull on the power 

wires. 

 

  

 

Figure 0-2. DaNI Charger Connection 

 

Grab the plastic connector covers 

and not the wires when connecting 

and disconnecting the power cable 



 
Figure 0-3. Location of ethernet connection, DIP switches, Reset switch, and LEDs on the NI 

9623 sbRIO 

 

The four-LED array shown in Figure 0-4 is helpful when troubleshooting.  The POWER LED is lit 

while the NI sbRIO device is powered on. This LED indicates that the 5 V and 3.3 V rails are 

stable.  The STATUS LED is off during normal operation. The NI sbRIO device indicates 

specific error conditions by flashing the STATUS LED a certain number of times: 

 

 One flash every couple seconds indicates that the sbRIO is unconfigured. The next 

section of the experiment will explain how to configure the device.  

 Two flashes means that the device has detected an error in its software. This usually 

occurs when an attempt to upgrade the software is interrupted. Reinstall software on the 

device.  

 Three flashes mean that the device is in safe mode because the SAFE MODE DIP 

switch is in the ON position. DIP switches will be explained later.   

 Four flashes meant that the device software has crashed twice without rebooting or 

cycling power between crashes. This usually occurs when the device runs out of 

memory.   

 Continuous flashing or solid indicates that the device has detected an unrecoverable 

error and the hard drive on the device should be reformatted.  

 

You can control the User and FPGA LEDs from programs that you write.   

 



 
 

Figure 0-4. NI 9623 sbRIO LED Array 

 

A small mobile robot like DaNI has very limited on-board power, space, or payload ability.  

Consequently the on-board computer must be light weight, small, and low power.  The sbRIO 

fills those requirements, but to do so, it is headless, meaning it doesn’t have monitor, keyboard, 

or mouse peripherals.  Also, it has limited capacity to store software.  Therefore, it must 

communicate with a remote host computer where software is developed with a more capable 

operating system (OS) that supports peripherals and has storage capacity for the development 

software and OS. The robot can be connected directly to the host computer as shown on the left 

in Figure 0-5, or as shown on the right, connected directly to a local area network through a hub 

or switch.  After robot control software is developed on the host computer, it is converted to a 

bitfile and downloaded to DaNI. 

 

 
 

Figure 0-5. Wired ethernet connections 

 

NI developed some software wizards to facilitate developing software and communicating 

between DaNI and a host computer.  The wizards as well as 180-day evaluation of LabVIEW 

Robotics, LabVIEW Real-Time, and LabVIEW FPGA module software are on the DVD that is 

packaged with the kit.  If it hasn’t been preinstalled on your host computer, install the software 

from the DVD. Computer administrator privileges are required to install the software.  The install 

may identify updates or patches.  Copy the information so you can install these from the NI 

website after completing the DVD software installation.  

  



Before you turn on the Master switch (shown in Figure 0-1), connect the robot to the computer 

with the cross over Ethernet cable provided in the kit or connect it to a network with a CAT 5 

Ethernet cable.  Then turn the motor switch off and the master power switch on (see ―MOTOR‖ 

and ―MASTER‖ in Figure 0-1).  Note that the computer must use dynamic, or DHCP, instead of 

static IP addresses to download software with the Hardware Wizard. 

 

Figure 0-5 shows the use of a crossover cable or a standard CAT 5 cable depending on the 

type of connection. As shown in the figure, a standard (straight through) cable without a 

crossover connector should be used when connecting hardware to a computer through an 

Ethernet hub or switch. If you don’t know if the Ethernet cables available to you are crossovers, 

a standard CAT 5 cable has a 1-to-1 mapping of pins from one connector to another, but a 

crossover cable connects the transmission pins from one end to the receive pins on the other 

end (crosses them over).  Observe the color of the individual wires through the connectors. 

Figure 0-6 shows the color differences between a crossover cable and a standard Ethernet 

cable and the pinouts of a crossover cable. You can also use a multimeter to probe the 

connections. Connect the positive end of the multimeter to a pin on one end of the cable and 

probe the pins on the other end of the cable to determine if two ends have the same pin 

connections. If they are the same on both ends, it's a straight through cable. Otherwise, it's a 

crossover cable. 

  

 
Figure 0-6. Cat 5 Ethernet and crossover cable conductor colors and pinouts 



 

Before the host computer and DaNI can communicate over either type of network, the sbRIO 

must be configured.  Configuration requires giving values for the IP (internet protocol) address, 

subnet mask, gateway and DNS (Domain Name System) server.  The IP address is the unique 

address of a device on your network. Each IP address is a set of four one- to three-digit 

numbers in dotted decimal notation, for example 169.254.62.215. Each number is in the range 

from 0 through 255 and is separated by a period. The Subnet Mask determines whether DaNI is 

on the same network as the host.  255.255.255.0 is the most common subnet mask.  Gateway 

is the IP address of a device that acts as a gateway server, which is a connection between two 

networks.  The DNS Address is the IP address of a network device that stores host names and 

translates them into IP addresses.  If you use the crossover-cable direct connection, the 

gateway and DNS can both be set to 0.0.0.0. 

 

IP addresses can be assigned automatically with Dynamic Host Configuration Protocol (DHCP) 

or statically.  A DHCP server on the network that  is connected to the DaNI host assigns an IP 

address and other IP configuration parameters, such as the subnet mask, default gateway, and 

DNS server automatically to the host when it is booted so the host can communicate with other 

computers over the network.   To determine whether your network is set to obtain an IP address 

automatically, click start and select Control Panel»Network Connections.  Right-click Local Area 

Connection and select Properties.  Select Internet Protocol (TCP/IP) and click Properties. If the 

Obtain an IP address automatically option is selected, your network uses DHCP.  Otherwise, 

your network uses static IP addresses. 

 

If DaNI is connected to a hub or switch on a network at an organization that controls network 

access, you will have to contact the people who control the access, such as the IT department, 

and request permission to connect to the network.  The access controller may also assign IP 

addresses. 

 

Establish Communications between DaNI and a host 
computer using the Hardware Wizard 

 
The hardware wizard is the easiest way to establish communication between the host computer 

and DaNI.  It configures the communications automatically.  Launch LabVIEW Robotics by 

clicking Start Menu » All Programs » National Instruments LabVIEW Robotics.  If a window 

opens allowing you to choose the environment, choose LabVIEW Robotics as shown in Figure 

0-7.  If a Window doesn’t open with that choice, choose Tools>>Choose Environment from the 

LabVIEW Menu Bar to open the window.   

 



 
 

Figure 0-7. LabVIEW Choose Environment Window 

 

Click on the Getting Started tab.  Launch the Hardware Setup Wizard by clicking the Hardware 

Wizard icon shown in Figure 0-8.  If you don’t see the embedded video and the Hardware Setup 

Wizard, verify that you are on the ―Getting Started‖ tab. 

  

Help is available at: http://zone.ni.com/devzone/cda/tut/p/id/10405 
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Figure 0-8. LabVIEW Robotics Getting Started Window 

 

You can also open the Hardware Setup Wizard by selecting Start»All Programs»National 

Instruments Robotics Hardware Setup, or clicking the Hardware Setup Wizard link on the 

Getting Started page of the Getting Started window in LabVIEW.   

 

The Hardware Setup Wizard window shown in Figure 0-9 opens and leads you through 

several steps to establish communication between the host computer and DaNI.  Read the 

information in the window and click the Next> button. 

 

Getting Started Tab 



 
 

Figure 0-9. Hardware Setup Wizard Window 

 

The window shown in Figure 0-10 opens giving you the option of setting up hardware for 

different types of targets (hardware used in robotic systems).  Choose the Starter Kit 2.0 target 

type and click the Next > button. 

 



 
 

Figure 0-10. Target type selection window 

 

The next, Figure 0-11, window reminds you to connect the motors and sensors to the robot and 

the robot computer before proceeding, and to make sure that the motors switch is in the off 

position.  If the motors and sensors are connected to DaNI, click the Next> button. 



 
 

Figure 0-11.  Connect Motors and Sensors window 

 

The next window, Figure 0-12, gives you two steps, Ethernet and power connections.  Connect 

the Ethernet crossover cable packaged with the kit between the sbRIO on DaNI and the host 

computer.  The power is already connected, but make sure the battery has been charged and 

the Master power switch is in the ON position.  The DIP switches and LEDs will be explained 

later, just check that the DIP switches are all in the OFF position and only one LED is lit.  You 

can ignore the CompactRIO portion of the window. 



 
 

Figure 0-12. Connect Ethernet and power 

 

 

After clicking the Next> button, it may take a few seconds for your target to be recognized.  

Once your hardware is detected and an IP address assigned as shown in Figure 0-13, verify 

that you have selected the device with the correct serial number. The serial is located on a small 

green sticker at the bottom right corner of the Single-Board RIO. Write down the IP address 

assigned to DaNI.  

 



 
 

Figure 0-13. Targets Detected window 

 

Since the system is able to support multiple CompactRIO or Single-Board RIO targets 

connected to the same subnet as the host computer, the Hardware Setup Wizard returns the 

model type and serial number of each available target on the Detecting Hardware page.  This 

requires you to select the device with a mouse click so it is highlighted as shown in Figure 0-13.  

The Next> button will be disabled and greyed out until you click on the target.  Click Next> to 

continue with the wizard, allowing it to install software and copy files over to the Single-Board 

RIO target. This will take a few minutes and the windows shown in Figure 0-14 will be displayed. 

 



 
 

Figure 0-14. Target Software Installation window 

 

After the software is installed, the Figure 0-15 window is displayed showing successful 

deployment.  If the deployment was unsuccessful, there is some information for troubleshooting.  

Subsequent sections of this experiment contain more detailed information about what this 

Wizard does that will provide fundamental knowledge for troubleshooting and understanding the 

configuration process. 



 
 

Figure 0-15. Test Deployment Success window 

 

After the software is deployed to DaNI, you can calibrate the orientation and test the PING))) 

ultrasonic transducer.  First, orient the transducer by adjusting the slider shown in Figure 0-16.  

There are no markings to make sure you have the sensor oriented directly forward, but try to get 

it as close as possible.   Record the angle and click the Next> button.  This angle will be written 

to a file on the sbRIO that initialization software will read.  You will learn how to write your own 

orientation calibration program and write information to file on the sbRIO later in this set of 

experiments. 

 



 
 

Figure 0-16. Calibrate Sensor Orientation 

 

After you click Next>, a graph showing the distance (range) signal from PING))) is displayed as 

shown in Figure 0-17.  Make sure that the sensor is functioning properly by locating DaNI 

orthogonal to a flat surface that will reflect sound, like a wall or the side of a box, at a known 

distance (in the 0.5 to 3m range) in front of the sensor. Wait for a few minutes after placing an 

object in the field of view of the ultrasonic transducer to observe the correct distance as 

previous distance signals may still be in memory.   

 



 
 

Figure 0-17. Test Sensor Connection window 

 

After testing PING))) click Next> to test the motors and encoders.  Place DaNI in an area where 

it can move safely, set the Motors switch to ON, and operate the sliders shown in Figure 0-18.  

After completing the motors test, click Next>. 

 



 
 

Figure 0-18. Test Motors window 

 

 

This completes the hardware setup and the window shown in Figure 0-19, is displayed.  Check 

the ―Create a new robotics project in LabVIEW‖ box and click the Finish button (there is no Exit 

button as stated in the instructions in the window). 

 



 
 

Figure 0-19. Step 6 window showing successful completion of the hardware setup 

 

After you click Finish with a checkmark in the Create a new robotics project in LabVIEW 

checkbox, the Wizard will exit the Hardware Setup Wizard.   

 

The following describes how to do the hardware setup without the Hardware Wizard.  Even if 

you used the wizard, it is instructional to study the process so you understand what the wizard 

did.   But if desired, you can go directly to the section on Creating a Project without the 

Hardware Wizard to create a LabVIEW Robotics Project. 

Establish Communications between DaNI and a host 
without the Hardware Wizard 

 
If the Hardware Wizard isn’t available or if your network uses static IP addresses, use the 

National Instruments Measurement and Automation Explorer (MAX) shown in Figure 0-20 



(Start>>All Programs>>National Instruments>>Measurement and Automation) to configure the 

host to DaNI communications.  If the host computer is already configured on a network, you 

must configure communications with DaNI on the same network.  As shown in Figure 0-5 you 

can communicate either with at crossover directly to the host or a CAT5 cable to a hub or 

switch.  If neither machine is connected to a network, you must connect the two machines 

directly using a CAT-5 crossover cable or hub. You can use the direct connection to configure 

DaNI from the host computer. 

 

 
 

Figure 0-20. Measurement and Automation Explorer  
(MAX) 

 

With MAX, you can: 

 

● Configure your National Instruments hardware and software 

● Create and edit channels, tasks, interfaces, scales, and virtual instruments 

● Execute system diagnostics 

● View devices and instruments connected to your system 

● Update your National Instruments software 

 

In addition to the standard tools, MAX can expose item-specific tools you can use to configure, 

diagnose, or test your system, depending on which NI products you install. As you navigate 



through MAX, the contents of the application menu and toolbar change to reflect these new 

tools. 

 

To configure communications with the sbRIO, expand Remote Systems in the Measurement & 

Automation (MAX) configuration tree. Previously detected remote systems are already shown. 

MAX will add newly detected systems after a short delay. MAX automatically searches for new 

remote systems every time you launch MAX and expand Remote Systems.   

 

If a previous user assigned an IP address to DaNI, you may need to change it so it is 

compatible with your network.  You can reset the IP with the DIP switches identified in Figure 

0-21.   See Figure 0-3 to locate the switches on the sbRIO. 

 

 
 

Figure 0-21. sbRIO DIP switches 

 

If the safe mode switch is in the ON position at startup, the sbRIO launches only the essential 

services required for updating its configuration and installing software. The LabVIEW Real-Time 

engine does not launch.  If the switch is in the OFF position, the LabVIEW Real-Time engine 

launches. Keep this switch in the OFF position during normal operation. The SAFE MODE 

switch must be in the ON position to reformat the drive on the device.  

 

Set the Safe mode switch and the IP RESET switch to the ON position and push the sbRIO 

reset switch shown in Figure 0-3 to reset the IP address to 0.0.0.0.  The status LED will blink 3 

times in succession continuously to indicate that the sbRIO is in safe mode. 

 

You can now configure a new IP address that matches your network configuration.  You can set 

a DHCP or static IP.   You can set either DHCP or static to communicate over the crossover 

cable or over an ethernet CAT 5 cable to a network hub or switch as was shown in Figure 0-5.   

 

To verify that MAX detects the sbRIO target, expand the Remote Systems tree as shown in 

Figure 0-22.  If no device is listed, refresh the list by clicking Refresh or pressing <F5>. 

 



 
 

Figure 0-22. DaNI sbRIO DHCP network settings information in MAX 

 

Configure the DaNI sbRIO target to use a Link Local IP address as shown in Figure 0-22. Select 

the sbRIO target and the Network Settings tab. Verify that Configure IPv4 Address is set to 

DHCP or Link Local.  Set the Configure IPv4 Address to DHCP or Link Local.   

 

Select the System Settings tab as shown in Figure 0-23.  Uncheck the Halt on IP Failure 

checkbox is disabled. When the CompactRIO is configured to use a DHCP or link local IP 

address and the Halt on IP Failure checkbox is disabled, the sbRIO will use a link local address 

if it does not find a DHCP server, which it shouldn’t since you are connected directly to the host 

using a cross-over cable.   

 

 
 

Figure 0-23. DaNI sbRIO system settings information in MAX 



 

Set the SAFE MODE and the IP RESET switch on the sbRIO target back to the OFF position. 

Click the Save button in MAX unless it is dimmed.  If asked to reboot, choose yes.  Press the 

sbRIO reset button on the CompactRIO target, and wait for the POST to complete.  The status 

LED should turn off and not blink. 

 

Record the IP address.  When an RT target is configured to use a DHCP or link local IP 

address, the RT target may not always have the same IP address after rebooting. View the 

Network Settings tab in MAX to determine the current IP address. 

 

You can use the System Settings tab in MAX to assign a different host name.  Type in a new 

name, like DaNI, and click the MAX Save button. 

 

If your system uses static IP addresses instead of DHCP, you can configure a new static IP 

address for the device in MAX.  Similar to the process described above, select the sbRIO target 

and the Network Settings tab. Set the Configure IPv4 Address to Static instead of DHCP or Link 

Local.  Enter new values for the IP, subnet, gateway and DNS.  Base the values on the host 

computer or use values from your network administrator.  To find out the network settings for 

your host computer, access the TCP/IP properties as described above, or run ipconfig.  To run 

ipconfig, open a command prompt window (start>>search programs and files>>cmd), type 

ipconfig at the prompt, and press <Enter>. If you need more information, run ipconfig with the 

/all option by typing ipconfig/all to see all the settings for the computer. Use the first three dotted 

decimal values of the host for the IP address and set the fourth to a value different from the host 

if DaNI is connected to the host via a crossover cable and the host is not connected to a 

network.  If DaNI is connected directly to a network via a hub or switch, contact the network 

administrator to obtain an IP address that isn’t used by any other computer on the network.  The 

subnet, DNS, and gateway values should be the same as the values reported for the network 

from the TCP/IP properties or ipconfig query. Make sure that the SAFE MODE and IP RESET 

DIP switches are set to OFF before rebooting the controller.  Click Save and Click Yes when 

MAX prompts you to reboot the target. The sbRIO should now show up in MAX with the static IP 

that you configured.  The status LED should turn off and not blink. 

 

Add, Remove, or Update Software on DaNI without the 

Hardware Wizard 
 

The Hardware Wizard automatically loads the necessary software for DaNI.  If you didn’t use 

the wizard, you can add, remove, or update software from MAX.   If software has been loaded 

previously, you can view it by expanding the Software item in the MAX tree as shown in Figure 

0-24.  If it hasn’t, right click the sbRIO item in the MAX tree and choose add software, or click on 

the sbRIO item and choose the Add/Remove Software button in MAX.  This opens the Real 

Time Software Wizard window and you can choose which software components to download 

from the host to DaNI.  All items were selected for the configuration shown in Figure 0-24.  

 



 
 

Figure 0-24. Software loaded on DaNI from MAX 

Creating a Project without the Hardware Wizard 

 

If you used the Hardware Wizard, a project was created and opens automatically.  Projects are 

required to communicate between the host and sbRIO.  Projects are used to group together 

both LabVIEW and non-LabVIEW files, create build specifications for executables, and deploy 

or download files to targets such as NI CompactRIO and NI Single-Board RIO.  If you used the 

Hardware Setup Wizard and the Robotics Project Wizards In the previous segments of this 

experiment, they automatically create a project for you.  If you used MAX without opening 

LabVIEW in the previous segments of this experiment, to develop a project, open LabVIEW 

2011.  The choose environment settings window shown in Figure 0-25 opens.  Choose the 

robotics environment.  You can make it your default environment if you like. 

 



 
 

Figure 0-25.  Choose environment window 

 

Click the Start LabVIEW button at the bottom of the window and the Getting Started window 

shown in Figure 0-26 opens.  Select Create New Robotics Project.  Select the DaNI 2.0 project 

from the select project type window as shown in Figure 0-27 and click Next.  If the host is 

connected to DaNI with the crossover cable and DaNI is powered on, the project wizard should 

inherit the IP address correctly from MAX as shown in Figure 0-28 and you can click Next.  If 

not, enter the IP address and click Next.  Enter a location on the host computer hard drive 

where you have write access as shown in Figure 0-29, enter a project name, and click Finish 

 



 
 

Figure 0-26. LabVIEW Robotics 2011 Getting Started Window 

 

 
 

Figure 0-27. Select project type 

 



 
 

Figure 0-28. Enter the IP address 

 

 
 

Figure 0-29. Project save location 



 

Experiment 1-2 DaNI Test  
 

If you used the Hardware Wizard, it will automatically build a project like the one shown in 

Figure 0-30 for you.  If you didn’t use the Hardware Wizard, you can use the Project Wizard 

(explained above) to build the project.  To open a project that was closed when you exited 

LabVIEW, launch LabVIEW and click the project, as shown in Figure 0-31, if it is listed in the 

getting started window.  If it isn’t listed, use the Browse button to locate and open it. 

 

 
 

Figure 0-30. Project Explorer Window 

 



 
 

Figure 0-31. Open an existing project from the Getting Started window 

 

The project shown in the figure includes the host computer, the DaNI sbRIO target, sensor and 

actuator drivers, and software programs.  Once you become more familiar with LabVIEW you 

will be able to develop projects without the wizard, and consequently will have more control over 

what is included in a project.  National Instruments uses the LabVIEW Project Explorer to 

facilitate communication between a PC and a remote target (the sbRIO on DaNI). The Project 

Explorer window includes two pages, the Items page and the Files page.  The Items page 

shown in the figure displays the project items as they exist in the project tree. The Files page 

displays the project items that have a corresponding file on disk. The Project Explorer window 

includes the following items by default: 

 

Project root—Contains all the items for the project and displays the file name. 

My Computer—Represents the local or host computer as a target in the project. 

Dependencies—Includes items that software programs (VIs) under a target require. 

Build Specifications—Includes build configurations for source distributions and other types of 

builds available in LabVIEW toolkits and modules.  You can use Build Specifications to 

configure stand-alone applications, shared libraries, installers, and zip files. 

 

The items in the project are arranged in a tree or hierarchical structure.  The first item, 

―Project:...― is the root.  This item shows the name of the file saved on disk with the file 



extension lvproj.  The second item, My Computer, is indented to show it is lower in the 

hierarchy.  It represents the host computer where programs are developed.  

  

The third and fourth items, Dependencies and Build Specifications, are indented below My 

Computer indicating that they are lower in the hierarchy and belong to My Computer.   

 

The next item moves up in the heirarchy so its level is equivalent to My Computer.  It represents 

another computer in the project, the sbRIO on DaNI.  In addition to the name of the computer, 

the IP address is displayed.  The sbRIO item has dependencies and build specification items 

like My Computer and some additional items.  The Chassis item is part of the sbRIO that 

connects to and communicates with transducers and actuators.  The NI Robotics Starter Kit 

Utilities.lvlib item are some utility programs that have been written for DaNI to speed the 

development of programs by allowing users to focus on high-level robotics concepts.   

 

To add a software program to a LabVIEW Project, right-click the hardware target which the 

program should run on, and select New » VI. If the program is placed under My Computer, it will 

execute on the host. If the program is placed under the sbRIO target, it will deploy to and 

execute on the sbRIO.   

  

When you complete the Robotics Project Wizard, LabVIEW opens the Roaming.vi software 

program on the host computer as shown in Figure 0-32. 

 

 
 

Figure 0-32. Roaming program user interface 

 

This program was written for you in LabVIEW.  LabVIEW programs are called virtual 

instruments, or VIs, because their appearance and operation imitate physical instruments, such 

as oscilloscopes and multimeters. A VI has two windows, a front panel window and a block 



diagram window.  The front panel shown in Figure 0-32 is the user interface for the VI.  The 

block diagram will be discussed later.  The front panel has a graph of distance to obstacles and 

a stop button.  The distance to obstacles graph is from the PING))) ultrasonic transducer that 

pans +/- 65 while DaNI drives.  The point direction angle is relative to the direction of travel, so 

the graph orientation or reference is as if you were riding on DaNI. 

 

Follow the instructions on the left side of the front panel of the Roaming VI to test the 

configuration and software.  The instructions ask you to run the VI, which you do by clicking the 

Run button. 

 

Use the Run button on the Front Panel toolbar to execute the VI.  The Front panel toolbar is 

shown in Figure 0-33. 

 

 
 

Figure 0-33. Front Panel toolbar 

 

The following explains the front panel and block diagram toolbar icons. 

 

 



 



 
 

Before clicking the Run button, review the LabVIEW Robotics Starter Kit Safety Guide by 

navigating to the LabVIEW\readme directory on the DVD that is packaged with the kit and 

opening StarterKit_Safety_Guide.pdf.  Remember that DaNI is expensive so be very careful not 

to damage it. 

 

When you click the Run button, the software that was automatically developed by the Wizards 

will be deployed to the DaNI sbRIO and the Deployment Progress Window shown in Figure 0-34 

will be displayed. 

 

 
 

Figure 0-34. Deployment progress window 

 

When you disconnect the network cable to allow DaNI to roam untethered, the program running 

on the host computer will display a series of messages like the one shown in Figure 0-35.  

When you click the OK button, the application on the host will terminate.  That is okay since 

DaNI no longer needs this program.  Whether the program on the host runs or not doesn’t affect 

the operation of DaNI after the network cable has been disconnected. 

 

 
 

Figure 0-35. Lost connection message 

 



If the software deploys and DaNI functions with and without the network tether, it has 

successfully tested and you can proceed to the next section of the experiment.  Save the project 

in a folder on your computer where you have write access and you can open it in the future 

without using the robotics project wizard. 

 

Experiment 1-3 Evaluate the Operation of an 
Autonomous Mobile Robot 
 

Read completely through this section of the experiment before you start.  Study the material in a 

robotics text on mobility and autonomy, like Chapters 1 and 2 in Siegwart et al (2011) to 

integrate fundamental concepts with the results from this experiment.  Set up an indoor area 

with a flat floor for the robot to operate in.  Set up the area to gather information to answer the 

questions below.  Avoid stairs and any other drop offs where DaNI might drive over the edge, 

fall, and be damaged.  Draw a plan view or make a map of the environment to scale of the area.  

Figure 0-36 shows an example.  If it is in a room, draw the walls, doors, furniture and other 

obstacles.  Draw at the level of what the robot ―sees.‖  That is, the robot will see the legs of a 

chair or table, not the entire piece of furniture.  You can draw it in a CAD program or on paper.   

 

 
Figure 0-36. Example roaming path map 

 

Open the robotics project that was built by the project wizard in the previous segment of the 

experiment, unless it is already open.  You can open it by double clicking the file in Windows 

Explorer or by opening the LabVIEW 2011 program and clicking on the project that should be 



listed in on the Getting Started window.  If it isn’t listed, choose File>>Open or choose Open 

Project and browse to the project.   

 

Review the LabVIEW Robotics Starter Kit Safety Guide by navigating to the LabVIEW\readme 

directory on the DVD that is packaged with the kit and opening StarterKit_Safety_Guide.pdf 

 

Place the robot in an orientation and location that you will identify as the base pose.  Start the 

robot as in the test run above.  Allow the robot to roam (navigate autonomously) for about 1 - 2 

minutes.  If the robot gets ―stuck‖, i.e. with its wheels locked or spinning for over 5 seconds, 

push the motor stop button.  Immediately pick DaNI up or press the motor stop button if DaNI 

approaches stairs and any other drop offs where DaNI might drive over the edge, fall, and be 

damaged. 

 

Draw the path that the robot takes during the 1 - 2 minutes on the map.  To draw the path, it is 

helpful if the area has a grid, like a tiled floor, or a floor with taped or string grid marks.  The 

robot moves quickly so it is best, but not necessary, to record a 1- 2-minute video. 

 

Start the robot again in the base pose and draw the path it takes twice more, so you have 3 path 

drawings on the map.  Draw the 2nd and 3rd paths in different colors or line types to make them 

easily distinguishable from the first. 

 

Navigate to the Pittsco web site and identify the wheel, motor, and drive train components used 

to construct DaNI.   Create a drawing on paper or with CAD software that shows how the 

components are assembled. Report the specifications of each component. 

 

Which of the four types of wheels described by Siegwart et (2011): standard, caster, Swedish, 

or spherical does DaNI use? Explain the effects of changing DaNI’s rear wheel with one of the 

other three types.  Explain the effects of changing DaNI’s front wheels with one of the other 

three types. 

 

What types of surfaces is DaNI limited to? Can it operate on tile, carpet, and wood floors?  What 

size cracks or open spaces in a floor would limit DaNI’s mobility?  

 

Do you think DaNI could climb up and down a ramp (Don’t do this as part of the experiment 

unless the ramp has sides to DaNI falling off.)?  Would it be better to begin the climb forward or 

backward? Why? 

 

Do you think DaNI was designed for operation outdoors (Don’t operate it outdoors unless the 

weather is fine and the surface is clean and flat, like on a concrete or paved driveway)?  What 

might happen if DaNI got dusty and gritty?  Would would happen if it got wet? 

 

Could DaNI operate completely unsupervised i.e. (completely autonomous) for several hours 

(yes or no)? Why? Are the some obstacles that DaNI doesn’t detect?  Describe the obstacles 



and explain why you think DaNI doesn’t detect them?  (This will be covered in more detail in the 

next experiment.) 

 

Does DaNI have a goal to reach or is it just wandering around? 

 

if DaNI can drive straight without having to avoid obstacles, how straight does it drive? 

 

When DaNI detects an obstacle what action does it take? Does it slow down?  Does it always 

turn the same direction to avoid an obstacle? What happens when DaNI bumps into something 

that makes it stop? Do its wheels spin on low-friction (slick) surfaces?  On high-friction surfaces 

(carpet)? How does the construction of the robot keep it from being damaged when it bumps 

into something? 

 

Place a small object that is below the servo motor on the floor and see if DaNI detects it as an 

obstacle? 

 

What is the highest object that DaNI will drive over?  How is that related to the wheel diameter?  

How is it related to the ground clearance? 

 

Did DaNI turn in place anywhere while driving in the test area, i.e. with turning radius = 0?  What 

commands do you think have to be given to the motors to make it turn in place? 

 

Experiment 1-4 Compare Autonomous and Remote 
Control 
 

There isn’t a wizard to create a project for remote control operation, so locate, copy to the host 

computer, and open the Teleop Starter Kit 2.0 project shown in Figure 0-37 by downloading 

from ni.com or by copying from the starter kit DVD.  Even though the name of the project is 

teleop (assuming teleoperation), the software can be used for remote control as well.  

 

 
 

Figure 0-37. Teleop Starter Kit project 

http://ni.com/
http://ni.com/
http://ni.com/


 

Because the project wasn’t developed with a wizard, you need to enter DaNI’s IP address.  

Remember that the IP Address might change in DHCP networks, so open MAX and check the 

IP address.  Then, right click on the RT Single-Board RIO target in the project as shown in 

Figure 0-38 and choose properties. 

 

 
 

Figure 0-38. Teleop project properties 

 

Enter the IP address of the DaNI sbRIO as shown in Figure 0-39 and click the OK button.  

 

 



 
 

Figure 0-39. IP configuration for teleop project 

 

Connect the cross over cable to the host computer or a CAT 5 cable to a hub or switch so DaNI 

can communicate to the host.  It helps to have a long (~ 3 m) ethernet cable for this section of 

the experiment as you will drive DaNI while it is tethered to the host or hub/switch.  Turn on the 

Master switch on, and the Motor switch off.  Then, right click the sbRIO target in the project 

again and choose Connect as shown in Figure 0-40. 

 



 
 

Figure 0-40. Connect to DaNI in the project 

 

Software should deploy and the connect LED in the teleop project should turn bright green as 

shown in Figure 0-41. 

 

 



 
 

Figure 0-41. Bright green connect LED 

 

Note that there are two main programs, one for the host computer named Starter Kit 2.0 Host 

controller and one for the sbRIO named Starter Kit 2.0 Robot Receiver.      

 

Open the Starter Kit 2.0 Robot Receiver program shown in Figure 0-42 that will run on the 

sbRIO target by double clicking it in the project explorer.  Don’t be concerned if you don’t 

understand the port and other items on the front panel.  Just click the run button to deploy and 

run the program on DaNI.  Set the Master switch to on and the motor switch to off. 

 

 



 

Figure 0-42. sbRIO Robot Receiver VI front panel 

 

Open the Host Controller VI, shown in Figure 0-43, by double clicking it in the project explorer.  

Set the IP address and run the VI.  It will communicate with the sbRIO program via the Ethernet 

cable, so DaNI will remain tethered in this part of the experiment.  You will not disconnect the 

Ethernet cable as done in the previous section. 

 

 
 

Figure 0-43. Teleop project Host Controller VI 

 

Before test driving, move the servo angle slider to confirm that the host is communicating with 

the sbRIO program.  You won’t use the servo angle slider while driving, just use it to test 

communication before driving.   

 

Turn the Motor switch on and move the Forward Velocity and Angular Velocity sliders to drive 

DaNI.  Test drive DaNI until you have good control over DaNi’s speed and direction.  Then 

repeat the path from the previous section of the experiment with remote control to compare with 

autonomous operation and answer the following questions. 

 

DaNI’s only feedback is from the ultrasonic transducer and the wheel encoders.  How does your 

perception compare with DaNI’s when avoiding obstacles? 



 

Which can react faster, your hands on the keyboard or the sbRIO computer program? 

 

If the exercise required that DaNI operate for a longer period than 1 - 2 minutes, say for several 

hours, would remote control or autonomous operation be better? 



Experiment 2 – Ultrasonic Transducer 
Characterization 

Instructor’s Notes 

This experiment requires that the previous experiment be completed.  Similar experimental area 

and tools used in the previous experiment are used here. 

Goal 

Experiment with and characterize an ultrasonic transducer. Learn about the LabVIEW 

programming environment and learn some simple LabVIEW programming techniques.   

 

 

Required Components 
  

Objects for ultrasonic transducer targets like a large cardboard box and a laptop bag. 

  

Linear distance measuring tool like a ruler, meter stick, or tape measure. 

  

Angle measuring tool like a protractor. 

  

Background 

Students should study the Parallax website to obtain background on PING))), the ultrasonic 

transducer on DaNI.  

 

Students should study the ultrasonic ranger sections of Chapter 4 in Siegwart et al (2011) or a 

similar text. 

 

Experiment 2-1 Characterization with the Roaming VI 

Graph 

 

In the previous experiment DaNI roamed around an area that you designed.   DaNI reacted 

when it saw an obstacle and it may have collided with some obstacles.  This experiment will 

help you understand why DaNI detected some obstacles and not others.  As you know from the 



previous experiment, DaNI acquires data about obstacles from an ultrasonic transducer.  Read 

a text like Siegwart et al (2011) to learn the fundamentals of the transducer.   

 

Study the specifications for PING))) on the Parallex web site.  The operational description and 

specifications report that PING transmits a short (200 s) burst of ultrasonic energy with 40 kHz 

frequency.  Then it stops transmitting and ―listens‖ for a reflected signal.  The burst travels at 

331.5 m/s to an obstacle and is reflected back to the transducer.  The reflected signal could take 

up to 18.5 ms to return if the reflecting object is 3 m from the transducer.  PING))) does not 

transmit any bursts while waiting for the receive signal.  After receiving a reflection or timing out, 

because no reflection was received, PING))) waits 200 s before transmitting a new burst.  

Consequently, the period between bursts is about 18.5 ms + 2 * 0.2 ms = 18.9 ms.  The 

transducer is connected to the sbRIO computer and the sbRIO acquires the transducer signal 

data.   

 

The PING))) sensor provides an output pulse to the sbRIO that will terminate when the echo is 

detected, hence the width of this pulse corresponds to the distance to the target.  

 

Use this information to calculate the bandwidth or frequency of the transducer.  Explain how this 

might limit the speed that DaNI can roam. 

 

PING)))’s range is 0.2 to 3m.  Explain why it can’t be 0 to 3 m. 

 

Place DaNI in front of a good reflecting surface, like a wall, as shown in Figure 0-1 so that the 

surface of the target is parallel to the transducer backplane when the transducer is pointing at 

the wall in such a way that the center of the energy burst is perpendicular to the wall at the 

center of PING)))’s pan, i.e. when the servo angle is 0.  Clear a path about 3.5 m long.  There 

can be some objects on the sides of the path, i.e. the path doesn’t have to be 3.5 m wide.  

Connect DaNI to the host via Ethernet or crossover cable.  Turn on the Master switch, but not 

the motor switch.  Open the roaming project and run the roaming VI.   



 
Figure 0-1. Plan view of the linear distance characterization set up 

  

 

Position DaNI so that PING))) is 3 m (the maximum range) from the reflecting surface, i.e. in 

Figure 3-1, d = 3m.  Move away from the target so your body doesn’t interfere with the results. 

The results should be similar to Figure 3-2.  Since the servo motor pans (rotates) the PING))) 

mount pans 65 in either direction from the center, it will measure the distance to other objects 

in the area scanned.  Note that there are some additional objects in the area scanned by 

PING))) in Figure 0-2.  For this measurement, consider only the distance to the obstacle at X 

(m) = 0 and servo angle = 0.  For example, the distance the obstacle of interest, Y, is 

approximately 2.83 m (interpolating between 2.75 and 3m) at X = 0 m in Figure 3-2. 

 



 
 

Figure 0-2. Distance to an object near the maximum PING))) range. 

 

Measure the distance from the obstacle to PING))) with a tape measure and compare it with the 

results of the Roaming VI graph. 

 

Move DaNI toward the wall in 0.5 m increments and record the Y (m) value to the obstacle at X 

= 0 m each time.  Make a graph of the Roaming VI versus tape measurement distance. 

  

Instead of using a hard, reflective material like a wall, repeat the above experiment with 

something softer that would absorb the sound better.  For example make a target from a box 

covered with a coat or a chair cushion.  At what distance away does the signal drop below the 

threshold?  What does this tell you about the ability to detect and avoid all obstacles of different 

materials with ultrasound? 

 

Repeat the experiment with a small object and with a round object like a soccer or volley ball.  

What does this tell you about DaNIs ability to detect the size and shape of obstacles?  Might 

PING))) report the distance to some type of objects and not others even though they are in the 

same location relative to the transducer? 

 

Place a flat object, like the side of a cardboard box in front of PING))) and 2.75 m away.  Orient 

it parallel with the wheel axel which will put it orthogonal to the transducer signal at angle 0.  

Run the Roaming VI with DaNI tethered and the motors off.  Leave the box at this distance from 

PING))) and turn the box so it is no longer orthogonal to the signal while observing the graphed 

data.  Stop turning the box when the obstacle no longer appears in the graph.  Record the 

angle.  Repeat this at 0.5 m intervals and graph the angle vs the Y (m) distance from PING))).   

Y = 2.83 m 

 (the distance 

to an obstacle 

at X = 0 m) 



What does this tell you about DaNI collisions when approaching a wall at a shallow acute 

angle? 

 

Place an object in front of the sensor while viewing the graph.  How long does it take to obtain 

stable reading on the graph? Does the distance to the object affect the time to a stable reading? 

  

Determine the height of an obstacle that DaNI will detect at various distances. 

 

Experiment 2-2 Introduction to LabVIEW 

 

The results from the previous section of the experiment were approximate because you were 

interpolating graphed data. The experimental results would be more accurate if the exact 

distance was displayed digitally.   It was also tedious to write down the different values from the 

interpolation.  Saving to a file would be more useful.  You could evaluate the FOV if DaNI wasn’t 

panning during the experiment.  You could also determine if there were several objects in the 

FOV, what distance was reported (average, closest, most far, most reflective, or?).  

 

You need a different program instead of the Roaming VI to solve these issues.  This segment of 

the experiment teaches you how to build the program shown in Figure 0-3 and in Figure 0-4 

LabVIEW.  If you already know LabVIEW, you can build this program in just a few minutes.  If 

you don’t, follow the steps below to learn LabVIEW and build the program.  This will take longer, 

but as you progress through this set of experiments, concurrently learning LabVIEW, program 

development time will decrease.  If you want to use a program that has already been built for 

you in the Roaming project instead of coding your own VI, navigate to the Test Ultrasonic 

Sensor VI in the Test Panels folder in the Roaming project.  It is similar to the VI that will be 

created in this section of the experiment.   



 
 

Figure 0-3. Ultrasonic Transducer Characterization Program graphical user interface (front 
panel) 

 

 
 

Figure 0-4 Ultrasonic Transducer Characterization Program graphical code (block diagram) 

 

 

You will create the program on a laptop or desktop PC, but you will send the program to the 

robot and it will run on the sbRIO.  As discussed in Experiment 1, the LabVIEW Project Explorer 

facilitates communication between a PC and a remote target (the sbRIO) so you will create the 

program in the project.  Open the Roaming project as shown in Figure 0-5, right click the sbRIO 

item, since the program will run on the sbRIO, and choose New>>VI. 

 



 
 

Figure 0-5 Add New VI in the DaNI Roaming Test LabVIEW Project 

 

To review Experiment 1, the items in the project are arranged in a tree or hierarchical structure.  

The first item, Project: Experiment 1Display Ultrasonic Data.lvproj, is the root.  This item shows 

the name of the file saved on disk with the file extension lvproj.  The second item, My Computer, 

is indented to show it is lower in the hierarchy.  It represents the PC where programs are 

developed.   

 

The third and fourth items Dependencies and Build Specifications are indented below My 

Computer indicating that they are lower in the hierarchy and belong to My Computer.  

Dependencies include items that programs require. Build specifications includes configurations 

for stand-alone applications, shared libraries, installers and zip files.  You won’t need to work 

with either dependencies or build specifications in this experiment. 

 

The next item moves up in the hierarchy so its level is equivalent to My Computer.  It represents 

another computer in the project, the sbRIO on DaNI.  In addition to the name of the computer, 

the IP address is displayed.  The sbRIO item has dependencies and build specification items 

like My Computer and some additional items.  The Chassis item is part of the sbRIO that 

connects to and communicates with transducers and actuators.   

 



This section of the experiment will now focus on the concepts in LabVIEW necessary to develop 

the Ultrasonic Transducer Characterization.vi program.  These concepts are essential to other 

experiments in this series as well as many other programming applications.   

 

LabVIEW is different from most other general-purpose programming languages in two major 

ways. First, LabVIEW programming is performed by wiring together graphical icons on a 

diagram, as you could see in Figure 0-4.  The graphical code is then compiled directly to 

machine code so the computer processors can execute it.  This general-purpose programming 

language is known as G and includes an associated integrated compiler, a linker, and 

debugging tools.  G contains the same programming concepts and all the standard constructs 

found in most traditional languages, such as data types, loops, hierarchical programming, event 

handling, variables, recursion, object-oriented programming, and others. 

 

The second main differentiator is that G code developed with LabVIEW executes according to 

the rules of data flow instead of the more traditional procedural approach (in other words, a 

sequential series of commands to be carried out) found in most text-based programming 

languages like C and C++. Dataflow languages like G (as well as Agilent VEE, Microsoft Visual 

Programming Language, and Apple Quartz Composer) promote data as the main concept 

behind any program. Dataflow execution is data-driven, or data-dependent. The flow of data 

between nodes in the program, not sequential lines of text, determines the execution order. 

 

This distinction may seem minor at first, but the impact is extraordinary because it renders the 

data paths between parts of the program to be the developer’s main focus. Nodes in a LabVIEW 

program (in other words, functions, structures such as loops, subroutines, and so on) have 

inputs, process data, and produce outputs. Once all of a given node’s inputs contain valid data, 

that node executes its logic, produces output data, and passes that data to the next node in the 

dataflow path. A node that receives data from another node can execute only after the other 

node completes execution as shown in Figure 0-6. 

 

 

 

 

 
 

Figure 0-6. Data flow example 

The degrees to radians Expression 

Node will execute before the Write VI. 



 

As explained in Experiment 1, LabVIEW programs are called virtual instruments, or VIs, 

because their appearance and operation imitate physical instruments, such as an oscilloscope 

or a multimeter. LabVIEW contains a comprehensive set of tools for acquiring, analyzing, 

displaying, and storing data, as well as tools to help you troubleshoot code you write. 

 

A VI has two windows, a front panel window and a block diagram window.  Experiment 1 used 

the front panel window as the graphical user interface.  You will build the front panel shown in 

Figure 0-3 in this section of Experiment 2.  The front panel contains a Stop button, a Chart, and 

a Slider.  These and other objects are created with a palette.  The Controls palette contains the 

controls and indicators you use to create the front panel. You access the Controls palette from 

the front panel by selecting View»Controls Palette or by right clicking on any empty space in the 

front panel. The Controls palette is divided into various categories; you can expose some or all 

of these categories to suit your needs.  The number and type of categories depends on which 

modules were loaded with LabVIEW.  Figure 0-7 shows a Controls palette with all of the 

categories exposed and the Modern category expanded.  If you maneuver the pin in the upper 

left of the palette, you can pin the palette and it will change as shown. 

 



  
 

Figure 0-7. Floating and pinned controls palettes 

 

You create the front panel with controls and indicators, which are the interactive input and 

output terminals of the VI, respectively. Controls are knobs, push buttons, dials, and other input 

devices. Indicators are graphs, LEDs and other displays. Controls simulate instrument input 

devices and supply data to the block diagram of the VI. Indicators simulate instrument output 

devices and display data the block diagram acquires or generates.   The Stop button and the 

Slider in Figure 0-3 are controls and the chart is an indicator. 

 

The user can stop the program with the Stop button. The user can control the angular position 

of the PING))) mount with the slider.  The user can see the values generated by the DaNI 

Place the pin in the hole 



ultrasonic transducer on the chart indicator.  The VI acquires the values for the indicators based 

on the code created on the block diagram.  

 

Every control or indicator has a data type associated with it. For example, the Stop button 

control is a Boolean data type. The most commonly used data types are numeric, Boolean and 

string.  The numeric data type can represent numbers of various types, such as integer or real.  

Objects such as meters and dials represent numeric data.  The Boolean data type represents 

data that has only two possible states, such as TRUE and FALSE or ON and OFF.  Boolean 

objects simulate switches, push buttons, and LEDs.  The string data type is a sequence of 

ASCII characters.  String controls receive text from the user such as a password or user name.  

String indicators display text to the user. The most common string objects are tables and text 

entry boxes. 

 

When you right clicked the sbRIO item in the project explorer window and chose New>>VI a  

blank VI like the one shown in Figure 0-8 opens.  Name it by saving it as Ultrasonic Transducer 

Characterization.vi with File>>Save As in the same folder as the project.  It will appear under 

the sbRIO target in the project as shown in Figure 0-9. 

 

 
 

Figure 0-8. Blank front panel and block diagram of the Characterization VI 

 



 
Figure 0-9 Roaming project with the Characterization VI 

 

Add the Stop button by right clicking in the front panel window to open the controls palette.  

Click the Boolean palette and drag the Stop button control onto the front panel as shown in 

Figure 0-10. 

 

 
 

Figure 0-10. Place a Stop button on the front panel 

 



Since the Stop button has red stop text, you don’t need the label.  Right click the button, choose 

Visible Items and uncheck the label.  Add the chart by clicking the Graph palette in the controls 

palette and drag the Waveform chart indicator onto the front panel as shown in Figure 0-11. 

 

 
 

Figure 0-11. Waveform chart on the front panel 

 

Change the chart name by typing Ultrasonic Data Chart while the name has a black background 

as shown in Figure 0-12.  If the name doesn’t have a black background, double click in the 

name area and edit the name.  The chart name is called the label. 

 

 
 

Figure 0-12. Change the chart name (label) 

 

Change the vertical, dependant, or y axis title by double clicking on Amplitude and edit it to read 

Distance (m).  Right click the chart and choose Y Scale in the short-cut menu.  Then choose 

AutoScale Y to deselect it. (The checkmark with vanish.)  Double click the upper range value of 

10 and edit it to read 4. Double click the lower range value of -10 and edit it to read 0.  Right 



click the chart and choose Properties to open the window shown in Figure 0-13.  Click the Grid 

Style Colors icon and choose the Major and Minor tick grids as shown.  Then change to the Y-

axis with the pull down and configure it with Major and Minor tick grid lines as well.  Note the 

many additional properties you can change in this window and experiment with some of them. 

 

 
 

Figure 0-13. Customize the chart 

 

Right click the chart, choose Visible Items >> Digital Display so you will know the exact value of 

the distance and you won’t have to approximately interpolate values. 

 

Add a Horizontal Pointer Slider control from the Modern Controls >>Numeric palette to the front 

panel using the same process as with the previous two objects, and resize and customize it as 

was shown in Figure 0-3. 

 

After you create the front panel, switch to the block diagram by either clicking on it, choosing 

Window>>Block Diagram, or by pressing the shortcut key: Ctrl E.  In the block diagram, you 

create source code using graphical representations of functions that interact with the front panel 

objects. Block diagram objects include terminals, subVIs, functions, constants, structures, and 

wires, which transfer data among other block diagram objects as was shown in Figure 0-4.  As 

seen in Figure 0-14 icons for the button, chart and slider were automatically placed on the block 

diagram as you created them. 

 

Choose X or Y axes 



 
 

Figure 0-14. Front-panel object icons automatically added to the block diagram 

 

There are a set of icons in a pallete that can be used to populate the block diagram window 

similar to the way the controls palette was used to populate the front panel window.  To view the 

Functions palette, right click in the block diagram window. Build the block diagram shown in 

Figure 0-4 from left to right.   

 

Add the Starter Kit 2.0 Initialize VI from the Functions>>Robotics>>Starter Kit>>2.0 palette as 

shown in Figure 0-15.  This VI establishes a reference to the program that runs on the sbRIO 

FPGA (field programmable gate array).  I.e. it establishes a link between the Characterization VI 

and the sbRIO FPGA VI so they can exchange data. Remember that the sbRIO includes a 

processor and an FPGA as shown in Figure 1-2.    

 

 



 
 

Figure 0-15. Add the Initialize Starter Kit 2.0 VI icon to the block diagram. 

 

It can be difficult to locate the icon you want in the functions palette as there are a large number 

of icons available in a heirarchary.  Click the search button shown at the top of the functions 

palette window in Figure 0-16 and type in part of the name. 

 

As its name implies, an FPGA is hardware circuitry composed of an array of logic gates. 

However, unlike hard-wired printed circuit board (PCB) designs, which have fixed hardware 

resources, software written for FPGAs can literally rewire their internal. When an FPGA is 

configured, the internal circuitry is connected in a way that creates a hardware implementation 

of the software application. Unlike processors, FPGAs use dedicated hardware for processing 

logic and do not have an operating system. FPGAs are truly parallel in nature so different 

processing operations do not have to compete for the same resources. FPGA devices deliver 

the performance and reliability of dedicated hardware circuitry but are reconfigurable with 

software, in this case, LabVIEW VIs.  In addition to offering high reliability, FPGA devices can 

perform deterministic closed-loop control at extremely fast loop rates. In most FPGA-based 

control applications, speed is limited by the sensors, actuators, and I/O modules rather than the 



processing performance of the FPGA. For example, the proportional integral derivative (PID) 

control algorithm that is included with the LabVIEW FPGA Module executes in just 300 

nanoseconds (0.000000300 seconds). PID control will be discussed in a later experiment.  

A single FPGA can replace thousands of discrete components by incorporating millions of logic 

gates in a single integrated circuit (IC) chip. The internal resources of an FPGA chip consist of a 

matrix of configurable logic blocks (CLBs) surrounded by a periphery of I/O blocks as depicted 

in Figure 0-17. Signals are routed within the FPGA matrix by programmable interconnect 

switches and wire routes.    

 

 
 

Figure 0-17. FPGA components 

 

One of the FPGA I/O blocks acquires data from the ultrasonic transducer.  The sensor is 

physically wired to a terminal on the sbRIO that passes the data to the FPGA.  Software 

configures the FPGA to communicate the data over the sbRIO bus to the real-time processor.  

The driver for the ultrasonic transducer has already been implemented for you, and it will be 

loaded onto the FPGA automatically.  The FPGA VI that acquires the signal from the ultrasonic 

transducer has already been developed for you and compiled into a bitfile which is embedded in 

the project, as shown in Figure 0-18, and will be loaded automatically to the FPGA when the 

Characterization VI runs. 

 

http://www.ni.com/fpga


 
 

Figure 0-18. FPGA bitfile in the project 

 

Virtual wires connect icons on the block diagram.  To learn where wires can be connected to a 

particular icon, right click the icon and choose help or hover the cursor over the icon and use the 

Ctrl H shortcut.  A window like the one shown in Figure 0-19 will open.  Additional information, 

shown in Figure 0-20 is available if you click the Detailed help link or the ? button.   

 

 
 

Figure 0-19. Help window for the Initialize Starter Kit 2.0 VI. 

 

FPGA bitfile 



 
Figure 0-20. Initialize Starter Kit 2.0 VI Detailed Help 

 

Figure 0-19 and Figure 0-20 show that there are four possible connections to this icon.  Note 

the different colors of the wires.  The colors indicate data types.  Data is input to the icon on the 

left side and output on the right side.  The upper left connection accepts the value of the IP 

address.  If you are connected to a network via a cat 5 ethernet cable, this input can be useful, 

but it probably isn’t necessary for a direct crossover connection to the host.  To create this input, 

a constant and a wire are needed.  You can create both at once.  Hover the mouse cursor over 

the connection and the mouse shape will change to a wiring spool and both the connection 

terminal box and the connection in the help window will blink as shown in Figure 0-21. 



 

 

 

 
 

Figure 0-21. Hover the mouse over the IP Address input connection  
 

Right click and choose Create>>Constant as shown in Figure 0-22.   
 

 
 

Figure 0-22. Create the IP address constant 

 

This will create a constant and will automatically wire it to the icon as shown in Figure 0-23.  
Enter the dotted decimal IP Address value into the constant.  The data type of the constant is 
String which has a pink color. 

 

 
Figure 0-23. The IP Address constant 

 

Next, place the Write Sensor Servo Angle VI on the block diagram from the 

Functions>>Robotics>>Starter Kit>>2.0 palette.  This VI will allow you to point the transducer 

relative to the DaNI frame.  Wire from the Initialize VI to this one as shown in Figure 0-24.  The 

upper wire is a reference wire that identifies the initialized device in case the VI contains several 

such devices.  An analogy for a reference data type is an address or a pointer.  When the data 

is passed from the sbRIO FPGA to the processor, it is written to memory.  The reference is 

analogous to the memory address.   When the Initialize VI is executed, it automatically reserves 

Blinking 
Cursor 

Shaped 

like a 

Wiring 

Spool 



memory for the data communicated from the FPGA to the processor.  The lower wire is error 

data so if an error occurred in the initialize VI, the write VI might not attempt execution. 

 

 
 

Figure 0-24.  The data flow wire paths to the Write Servo Angle VI 

 

The help window for the Write VI indicates an input for the angle in radians.  Most users are 

more familiar with degrees, so the user interface slider should be in degrees and the block 

diagram should convert to radians.  There is a degrees to radians conversion available from the 

functions palette.  Use the search button on the functions palette to locate it as shown in Figure 

0-25. 

 

 

 
 

Figure 0-25. Search results for Degrees to Radians conversion 

 

Double click the degrees to radians VI in the search list to see its location in the functions 

palette hierarchy.  Drag the icon onto the block diagram to the position shown in Figure 0-26.   

 

The icon represents an equation implemented in an Expression Node.  The Expression node 

can evaluate expressions with a single variable.  Several built in functions can be used in the 

node.  Select Help from the LabVIEW menu bar and choose LabVIEW Help from the pull down, 

then search for Expression Node to view the online help that includes the list of functions. 

 

Move the cursor over the output connection as shown.  The cursor changes to the wiring spool 

shape and the connection blinks.  Click connection to start the wire.  Move the cursor to the ccw 

servo angle (rad) input connection on the Write VI.  Note the orange color of the wire which 

represents a double precision floating point data type designated DBL. 

 



 
 

Figure 0-26. degrees to radians conversion Expression Node on the block diagram 

 

Drag the slider icon into position and wire it to the input of the conversion node as shown in 

Error! Reference source not found..  Right click each icon, choose Visible Items and check 

abel.  Resize the label to compress the space as shown. 

 

 
 

Figure 0-27. Wire the slider to the input of the conversion node 

 

Next, place the Read PING))) Sensor Distance VI on the block diagram from the 

Functions>>Robotics>>Starter Kit>>2.0 palette.  This VI communicates the ultrasonic 

transducer data from the FPGA to the processor.  Wire the reference and error wires as shown 

in Figure 0-28.  Using the Align button from the tool bar to align the bottom edges of the three 

icons as shown.  You can select all three icons by pressing the shift key down while clicking 

each icon.  This will facilitate creating a more readable diagram with straight wires.  Show the 

Read VI’s label. 

 



 
 

Figure 0-28. Read PING))) Sensor Distance VI on the block diagram 

 

Show the help window for the Read VI and study the input and output connections.  Reposition 

the Ultrasonic Data icon that represents the front panel chart.  Wire the Distance (m) output of 

the Read VI to the chart as shown in Figure 0-29.  Wire from the output of the Read VI to the 

input of the Read VI and a feedback node will automatically be inserted.  Right click the 

feedback node and choose Change Direction and organize the wiring as shown.  The purpose 

of the input that the feedback node is wired to is to provide a default value in case the FPGA did 

not provide a value. 

 

 
 

Figure 0-29. Wire from distance (m) output connection of the Read PING))) Sensor Distance VI 
to the chart and add a feedback wire to the default distand (NaN) input connection 

 

You should always close references to make the memory available to other programs and to 

prevent memory leaks that accumulate reserved memory.  So the next icon to place on the 

block diagram is the Close Starter Kit VI, available from the Functions>>Robotics>>Starter 

Kit>>2.0 palette.  Use show help to study the input and output connections.  Wire the reference 

and error wires to the Close VI input connections as shown in Figure 0-30.  This is also a good 

time to experience the block diagram clean up tool in the tool bar. 

 



 
 

Figure 0-30. Close the reference with the Close Starter Kit VI and use the Clean up Diagram 
tool 

 

The program will run on the sbRIO and communicate data from the FPGA to the processor on 

the sbRIO.  Save it and save the project.  The program was developed on the host computer 

and is saved in a folder on the host hard drive.  When you run the program, it will automatically 

be deployed to the sbRIO.  There is another set of code that automatically transfers the data 

over the Ethernet from the sbRIO to the host that is called Front Panel Communication.  So 

while the sbRIO is connected to the host, you can view the front panel on the host monitor.  You 

can think of it as running the block diagram on the sbRIO, running the front panel on the host 

computer, and communicating data between the two over the Ethernet cable.  

 

You have not finished the program yet, but you have code that will execute and can be tested.    

Test the program by running it and placing an object at a known distance from PING))).  It is 

always a good idea to test code incrementally while you build programs.  That way, you can 

more easily isolate and correct errors. 

 

The program developed so far will only transfer one data point.  You will add features in the 

following to iterate the code until you press the Stop button.  So the Stop button is not used at 

this time.   

 

It is much easier to characterize the transducer if you don’t have to continually press the Run 

button to get a data point.  You could use the run continuously and abort buttons, but as 

explained in Experiment 1 that is not a good option.  The best way to repeat code execution is 

with one of LabVIEW’s loop structures.  You will use a structure called a While Loop.  Place the 

code that is to be repeated inside the loop.  Before adding the loop to the block diagram, make 

some space on the block diagram for the loop as shown in Figure 0-31 by moving the Initialize 



VI to the left and the Close VI to the right.  You can move them by dragging with the mouse or 

by selecting an icon and hitting an arrow key.  Hold the shift key down while pressing the arrow 

key to move larger increments.   

 

The position of the loop is shown by the dashed-line rectangle in the figure.  It is not necessary 

to iterate initialize and close, in fact, it is reduces performance to do so.  The program should 

initialize once and close once so those VIs should not be inside the loop.  Select the While loop 

from the Functions>>Structures palette.  The cursor changes to the dotted-line square shape 

with a darkened upper left corner as shown in Figure 0-31.  Move the cursor to the pin position 

indicated in the figure.  Left click to pin the upper left corner of the loop at the pin position.  Then 

move the cursor to the location for the lower right corner of the loop.     

 

 
 

Figure 0-31. While loop location on the block diagram 

 

Figure 0-32 shows the block diagram with the While Loop border enclosing the code to be 

repeated.  The loop executes the code inside its border repeatedly until stopped.  The loop 

structure includes the iteration and Conditional terminals as shown.  Study the LabVIEW Help 

for more information about the While loop.   

 

You created a Stop button control on the front panel to stop execution of the Loop.  The Stop 

control data should flow to the termination condition of the loop.  The loop will continue to 

execute until the condition is true.  Similar text pseudo code would look like this: 

 

while (STOP is not pressed) 

{ 

     //do what’s in the loop 

} 

Loop upper left corner pin position 

Loop lower right corner pin position 

Move left Move right 



To implement the stop functionality, select the stop icon on the block diagram and drag it into 

the loop as shown in and wire it to the loop Conditional terminal. 

 

Note that the Stop icon does not receive any inputs in the block diagram.  Its value depends on 

the user.  If the user presses the button, its value changes from False (the default) to True.  

When the Conditional terminal receives a true value, it terminates loop execution.  Since the 

Stop icon doesn’t have any inputs, its execution order is not obvious.  It will execute after the 

code in the loop border executes.  This assures that the code in the loop will always execute 

once.  So the Conditional Terminal executes prior to the next iteration of the loop.  If it receives 

a False value, the loop will iterate.  If it receives a True value, execution terminates and the 

code following the loop, i.e. the Close VI will execute. 

 

 
 

Figure 0-32. The loop border encloses the code that will be repeated 

 

If you don’t cause the loop to wait between iterations, it can monopolize all of the processor 
resources.  LabVIEW has several wait functions you can use to solve this problem.  Add the 
Wait Until Next function as shown in Figure 0-32 and create a constant of 20 ms so the loop will 
pause execution for a duration of 20 ms at every iteration. This is called Execution Control 
Timing. 

 

 
 

Figure 0-33. Characterization VI block diagram 

 

This completes the Characterization VI, so save it and save the project.  Connect the Ethernet 

cable to DaNI.  Turn the DaNI Master Switch on and the Motor Switch off.  Right click the sbRIO 

Iteration terminal 
Conditional 

terminal 



item in the project and connect.  Click the Run arrow on the Characterization VI.  The 

application will download and run, and the front panel will begin to update.  To test the VI, move 

your hand back and forth in the ultrasonic transducer’s field of view and watch the 

corresponding value change on the chart.  The chart should display results similar to Figure 

0-34.  Press the Stop button when you finish, but do not close the VI, you will use it in the next 

section of the experiment to continue characterizing the transducer. 

 

 
 

Figure 0-34. Results from moving a hand in the ultrasonic transducer field of view 

 

Experiment 2-3 Ultrasonic Transducer 

Characterization 
 

To better understand the ultrasonic transducer, it is useful to understand what code executes on 
the FPGA.  As you know from the investigations in this experiment, an ultrasonic transducer 
measures distance to an object by transmitting ultrasonic energy.  The transmitted energy might 
contact an object that will reflect it back to the transducer.  So after transmitting, the transducer 
becomes a receiver.  Many surfaces can reflect ultrasonic energy at different reflection 
strengths.  Some surfaces absorb most of the energy and reflect little.  The receiver needs to 
incorporate a threshold to distinguish the reflection from an object from noise.  So a received 
signal must be strong enough to exceed the threshold.   

 



The transducer measures the time between transmission and receiving a valid signal.  Time-of-
flight is the time that elapsed between emitting a packet of (ultrasonic) pressure waves, and 
receiving the reflection. The time is measured at the FPGA in ticks of the FPGA’s 40 MHz clock, 
meaning each 1 tick is equal to 25 nanoseconds.  The FPGA code converts the time to distance 
at standard room temperature.  The FPGA converts ticks to time-of-flight data and then to 
distance in meters. The FPGA implements equation below: 

 

d = c * t / 2 

 

where 

 

d = distance of object causing reflection of pressure waves 

c = speed of sound in air = 343 m/s at standard pressure and 20C 

t = round trip time-of-flight 

 

The FPGA receives a digital signal on DIO6 (refer to Figure 2-1).  A digital signal has two 

discrete levels—a high and a low level, using the normal standard for TTL or transistor to 

transistor logic, the low level is 0 – 0.8 V and the high level is 2 – 5 V. 

 

The signal from PING))) goes high during the transmit burst as shown in Figure 0-35.  It stays 

high until a valid reflected signal is received.  The FPGA records the total number of ticks 

between when the signal went high and when it drops.  The number of ticks is converted to time 

which is converted to round trip distance with the above information.  The FPGA divides the 

round trip distance by 2 and reports the distance to the object to the processor via the Read 

PING))) Sensor Distance VI. 

 

 
Figure 0-35. Transducer timing graphic 

 



The Read VI communicates the distance from the FPGA to the processor.  The ultrasonic 

characterization VI that you created calls the Read VI and requires you to interpolate the graph 

data, so repeat the characterization done previously with your ultrasonic characterization VI.   

 

Since the ultrasonic characterization VI can measure distance without panning, you can 

evaluate the field of view (FOV) easier.  Study the information about FOV in the specs on the 

Parallax web site.  What is maximum field of view (FOV) of the transducer?  Does the FOV vary 

with distance from the transducer? 

 

Measure the FOV and compare with the website information.  Place an object like a cardboard 

box 3m away from PING))).  Orient it perpendicular to the transmission with the box side 

centered at the transmission.  Carefully slide the box to one side, while maintaining the 3-m 

distance, until PING))) no longer reports an echo.  The box has moved out of the FOV at this 

point.  Record the distance from the transmission center line to the vanishing point.  Repeat in 

the other direction and report the width of the FOV at 3m.  Repeat at 0.5 m intervals from 3m to 

0.5 m.  Draw a plan view of the x distance from the transducer by the y distance signal 

vanishing point to the edge of the box to report how the FOV changes with distance from 

PING))).      

 

The FOV is really 3D.  It is conical.  What does this mean in terms of effects from the surface on 

which DaNI travels?  Consider driving to the edge of the floor surface, the height of the 

transducer, and the vertical angle of the transducer in your response. 

 

Place several objects in the FOV.  What distance was reported (average, closest, most far, most 

reflective, or?). 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



Experiment 3 – Motor Control 

Instructor’s Notes 

This experiment requires that the previous experiments be completed.  Similar experimental 

area and tools used in the previous experiment are used here. 

Goal 

Discover how to control motors.  Learn about motor drivers, PWM, and PID. 

 

Experiment with and characterize an encoder.  

 

Learn about VIs to control motors and how to build simple motor control programs.  Learn how 

to automatically terminate programs.  Learn about conversions between motor command units 

and user preferred units.   

 

 

Required Components 
 Test area similar to previous experiments. 

  

Linear distance measuring tool like a ruler, meter stick, or tape measure. 

  

Angle measuring tool like a protractor. 

  

Background 

Students should study the Pittsco website material that describes the motors and encoders and 

the Dimension Engineering website material that describes the motor driver.  

 

Students should study the section on optical encoders in Siegwart et al (2011) chapter 4 

 

Experiment 3-1 Open Loop Motor Control 

 

You discovered how the ultrasonic transducer signal can be used to locate obstacles in the 

previous experiment.  This experiment discovers how to control DaNI’s motors.  

 

To become more familiar with the two drive motors, study the information on the Pitsco web site 

for the TETRIX DC Drive motor, part number 39083.  Look at the relationship between the 



current, torque, efficiency vs. speed on the chart in the specifications.  Note that the current 

range required is 0 - 4.66 A and stall current is 4.6 A.  Then, sudy the sbRIO specifications 

noting that the current output is only 3 mA.   

 

Refer to Figure 2-1 and note that the Sabertooth 2x10 RC motor driver is included in the DaNI 

components to provide the power needed to drive the motors.  The motor driver connects to 

both the batteries and to the sbRIO.  The program you write tells the motor driver how much 

power to provide from the batteries to the motors.  Study the motor driver specifications on the 

Dimension Engineering web site.  It can supply 10A each to two DC motors. 

 

Note that Figure 2-1 shows signals from DIO4 go to the left motor and DIO5 go to the right 

motor.  Digital input and output signals are either high (on) or low (off) as described in the 

previous experiment, but you will want to have more than two choices for velocity.  You would 

like to drive slowly sometimes and quickly at others, so you would like to continuously vary the 

speed of the motors within a safe range.  How can you write a program that will continuously 

control the speed of the motors with a digital output? 

 

Pulse width modulation (PWM) is a technique in which a series of digital pulses is used to 

control an analog circuit. The length and frequency of these pulses determines the total power 

delivered to the circuit. PWM signals are most commonly used to control DC motors, but have 

many other applications ranging from controlling valves or pumps to adjusting the brightness of 

an LED. 

 

The digital pulse train that makes up a PWM signal has a fixed frequency and varies the pulse 

width to alter the average power of the signal. The ratio of the pulse width to the period is 

referred to as the duty cycle of the signal. For example, if a PWM signal has a 10 ms period and 

its pulses are 2 ms long, that signal is said to have a 20 percent duty cycle as shown in Figure 

0-1, which shows three PWM signals with different duty cycles.  

 



 
 

Figure 0-1. PWM Signals with Different Duty Cycles 

 

Figure 0-2 shows the block diagram of the motor control circuit where the motor driver controls 

the power from the battery to the motors using commands from a software program running on 

the sbRIO. 

 

 
 

Figure 0-2 motor control circuit block diagram  

 

The motor control software has already been written for you and resides in the FPGA bitfile that 

is loaded from the project.  You just have to build a program similar to the ultrasonic 

characterization VI developed in the previous experiment to drive the robot.  Use the 

programming skills from the previous experiment and the instructions in the following to build 

the Simple Drive VI shown in Figure 0-3.   

 

 



 
 

Figure 0-3 Simple Drive VI front panel and block diagram 

 

 
 

Figure 0-4 Simple Drive VI in the DaNI Roaming Test project 

 

You can open the Ultrasonic Characterization VI in the project, modify it, and save it with a 

different name, or you can copy it and modify the copy, or you can add a new VI to the project.If 

you choose to copy and modify the characterization VI, open the VI and choose File>>Save As.  

The Save As dialog box opens.  Click the Copy radio buttion.  This creates and saves a copy of 

the file in memory to disk with a name you choose. If you enter a new file path or name for the 

file, the original file on disk is not overwritten or deleted.  You can choose between: 

 

Substitute copy for original—Both the original file and the new file exist on disk, but the original 

VI closes and the new VI opens. Use this option if you want to create a copy of the original file 

and immediately edit the copy.  If the original file is in a project library or project, this option 

substitutes the new file for the original in the project library or project.  

 

Create unopened disk copy—Both the original file and the new file exist on disk, but only the 

original file remains open in memory. Use this option if you want to create a copy of the original 

file but continue editing the original file, for example, if you want to create a backup copy. If the 

original file is in a library or project, this option does not add the new file to the same library or 

project.  

 

Open additional copy—Both the original file and the new file exist on disk and are open in 

memory. You must give the copy a new name, because two files of the same name cannot exist 

in the same application instance at the same time. Use this option if you want to create a copy 

of the original file, continue editing the original file, and also immediately edit the new file. If the 



original file is in a library or project, you have the option of adding the new file to the same 

library or project by placing checkmarks in the appropriate checkboxes.  

 

The main difference between the Simple Drive VI and the Ultrasonic Transducer 

Characterization VI is the Write DC Motor Velocity Setpoints VI.  If you are editing a copy of the 

characterization VI, delete the servo control and ultrasonic read VIs and add two copies of the 

Write Setpoints VI, one in the loop and one after the loop as shown.   

 

Show the context help for the Write Setpoints VI as shown in Figure 0-5.  This VI has the same 

reference and error in and out connections as the Vis used in the previous experiment, the 

difference is that there are two velocity inputs and no additional outputs.  Both velocity inputs 

have the same units, radians/second (even though it isn’t visible in the context help window) 

indicating rotational velocities.  Wire a constant of 0 to the inputs of the Write Setpoints VI after 

the loop to set the velocity to 0 before terminating the program.  Use a front panel control so 

users can choose the velocity for the VI in the loop.   

 

Users are more familiar with rotational velocity in RPM, so search the functions palette for an 

expression node that will convert RPM to radians/second and add it to the block diagram. Then 

create a slider control customized for rotational velocity in RPM on the front panel and connect it 

to the conversion node as shown in Figure 0-3.  The range of the slider control should be 0 to 

30 RPM.  Wire the conversion node to the input of the left motor ccw velocity input.  Before 

wiring the right motor ccw velocity, search the functions palette for and add a negate function as 

shown in Figure 0-3.  The reason for the negate function is that the ccw acronym in the 

connector name means counter clockwise.  It is counter clockwise looking at the outer portion of 

the wheel, so if the right wheel turns counter clockwise, it will reverse the robot.  Consequently, 

the velocity of one wheel is in the opposite direction of the other, so to drive the robot straight 

ahead, you need to send a negative value to the left motor. 

 

   
 

Figure 0-5 Write DC Motor Velocity Setpoints VI context help 

 

The other important change is a time delay before closing the reference.  Add a single-frame 

Flat Sequence Structure after setting the motor velocities to 0.  A Flat Sequence structure 

consists of one or more subdiagrams, or frames, that execute sequentially.  A single flat 

sequence structure to force sequencing of a VI that doesn’t  have error terminals is necessary 

sometimes, but don’t use flat or stacked sequence structures in your code when you can avoid 

them.  When used incorrectly, they will slow execution and make the code difficult to read.  

Study the LabVIEW help for more information on the flat sequence structure. 



 

Put a Wait Until Next Time Delay function in the structure with a constant of 500 ms.  This delay 

will give the system time to set the motor velocities to 0 before the reference is deleted.  Without 

it, the reference might be deleted before the motors are set to 0 and the robot will continue to 

run after the stop button is pressed.  This is not intuitive as LabVIEW data flow requires that the 

motor velocity setpoint VI be executed before the close VI.  But the motor velocity setpoint VI 

initiates communications through the sbRIO to the FPGA, to the motor driver, and finally to the 

motors, which takes several milliseconds.  If data flow passes execution control to the close VI 

before this series of activities completes, the reference is destroyed and the activity terminates 

before completion. 

 

In some situations you can create sequential code without using a sequence structure by wiring 

between icons.  But, in this case the Wait function does not have any reference or error 

connections for sequential wiring. 

 

Save the program and the project.  Test the program.  Turn on the Master and Motor Switches.  

Tether the robot to the network or to the host.  Test at low speed so you don’t collide with an 

obstacle and damage the robot.  Mark a straight line of about 2 m or use a string or tape and 

determine the error in driving straight over the same distance at 5 RPM, 10 RPM, and 15 RPM.  

 

The user might be more interested in giving the robot a linear velocity instead of a rotational 

velocity.  Modify the Simple Drive VI as shown in Figure 0-6 using the information in the 

following.  

 

 
 

Figure 0-6 Simple Drive Linear VI front panel and block diagram 

 

Edit the existing RPM to rad/s Expression Node, or delete it and add an empty expression node 

from the functions palette.  Determine the wheel circumference, and develop a new conversion 

equation that converts linear velocity of the robot in m/s to wheel rotational velocity in rad/s. 

Type it into the expression node.  Modify the slider scale and label to travel at a linear velocity 

equivalent of about 30 RPM.   Save the VI. 

 

Circumference = d = 12.5664 in = 0.3192 m 

where d = 4 in 

 

linear robot velocity (m/s) = 0.3192 m/rotation * rotational wheel velocity (rad/s) / 2 rad/rotation 

/ 60 s/min 

 



rotational wheel velocity (rad/s) = 2 rad/rotation * linear robot velocity (m/s) / 0.3192 m/rotation 

 

Slider scale maximum value (m/s) = 0.3192 m/rotation * 30 rotations/min / 2 rad/rotation / 60 

s/min = 0.25 m/s 

 

Save the program and the project.  Test the program.  Turn on the Master and Motor Switches.  

Tether the robot to the network or to the host.  Test at low speed so you don’t collide with an 

obstacle and damage the robot.   

 

You can stop the VI automatically so you don’t have to use the Stop button.  Modify the Simple 

Drive Linear VI so it automatically stops after N seconds where the user enters a value for N as 

shown in Figure 0-7 and described in the following.   

 

 
 

Figure 0-7 Simple Drive Timed VI front panel and block diagram 

 

To do this, you need to measure the elapsed time and compare it with the user’s input.  Since 

the elapsed time is available, you can multiply it by the user’s desired velocity and calculate the 

distance moved.   

 

The main modification of the previous program is the Tick Count VI that measures time.  Figure 

0-8 shows the context help window for the Tick Count VI.  Detailed help is available for this VI 

(see Figure 0-9) by clicking on the Detailed Help link or the ? in the context help window.  This is 

the same information that is available by selecting LabVIEW Help from the Help item in the 

menu bar and searching for the Tick Count VI. 

 

 

 



 

Figure 0-8.  Tick Count context help window 

 

 
Figure 0-9. Tick Count detailed help window 

 

When you place the Tick Count VI on the block diagram, since it is an Express VI, a Dialog box 

opens automatically to configure it for either ticks, sec, or msec.  An Express VI is a VI whose 

settings you can configure interactively through a dialog box.  The problem is that the 

configuration is not readily apparent on the block diagram reducing readability of the code.  So 

always add a free label (by double clicking on the block diagram) or a label to indicate the 

configuration as shown in Figure 0-7 where the label reads Tick Count (ms) to show the VI was 

configured for ms units instead of ticks or sec.  Since this VI runs on the sbRIO in the real time 

operating systems and not on the MS Windows host, any of the three options are available to 

you.  Use ms since its resolution is adequate for the purposes of this experiment.  

 

Timing is precise with the real time OS on the sbRIO.  Code runs deterministically in the real 

time OS.  Real time means that responses occur in time, or on time. With non-real-time systems 

like MS Windows, there is no way to ensure that a response occurs within any time period, and 

operations may finish much later or earlier than expected. In other words, real-time systems are 

deterministic, which guarantees that operations occur within a given time. Real-time systems 

are predictable.  

 

For a system to be a real-time system, all parts of it need to be real time. For instance, even 

though a program runs in a real-time operating system, it does not mean that the program 



behaves with real-time characteristics. The program may rely on something that does not 

behave in real-time such as file I/O, which then causes the program to not behave in real-time. 

 

Place a Tick Count Express VI from the Functions>>Real Time>>Timing palette in front of the 

loop and another inside the loop as shown in Figure 0-7.  The VI in front of the loop will execute 

once when the program starts and will provide a base time.  The base time value will flow 

through a tunnel in the loop and be available inside the loop.  The time value from the VI inside 

the loop will change (update) at each iteration of the loop.  By subtracting the two, you will 

measure the elapsed time.  Create an indicator for the front panel to display the elapsed time. 

 

Add a control to the front panel for the user to enter the drive time in seconds.  Since the user 

enters drive time in seconds, convert the Tick count output in ms to s by multiplying by 0.001.  

This operation uses two different numeric data types.  The Tick Count output is an unsigned 

long 32-bit integer, or U32, whose wire color is blue.  To create a constant of 0.001, you need a 

floating point number instead of an integer.  The most common is a double-precision (64-bit) 

floating point data type, or DBL, whose wire color is orange.  You can create this type of 

constant by right clicking on one of the orange wires in the diagram and choosing 

Create>>Constant from the short cut menu.  You can also get a DBL numeric constant from the 

functions palette.  Change the value from 0 to 0.001 and drag it to the correct location.   

 

If you wire two different numeric data types to a numeric function, like the multiply function used 

in this VI, LabVIEW does not create an error, instead, to reduce your programming effort, it 

automatically converts one of the terminals to the same representation as the other terminal. 

This action is called coersion.  LabVIEW chooses the representation that uses more bits. If the 

number of bits is the same, LabVIEW chooses unsigned over signed.  So in this instance, 

LabVIEW converts the U32 to a DBL.  Coercion dots appear on block diagram nodes to alert 

you that LabVIEW converted the value passed into the node to a different representation. 

Coercion dots can cause a VI to use more memory and increase its run time. Try to keep data 

types consistent in the VIs you create. To use memory more efficiently, eliminate coercion dots 

at numeric terminals. Right-click the input value on the block diagram and select Representation 

from the shortcut menu to change the representation of the input value to the representation of 

the terminal.  Leave the two different data types and the automatic conversion by LabVIEW in 

this case for instructional purposes. 

 

Compare the elapsed time with the user’s Drive Time using a Greater or Equal? Function from 

the functions palette and wire the Boolean data type output to the While loop conditional 

terminal to automatically stop the loop with the output is True. 

 

Multiply the elapsed time by the user’s robot linear velocity to calculate the distance and display 

it on the front panel with an indicator.  Align the objects on the front panel and block diagram to 

improve readability. 

 

Save the program and the project.  Test the program.  Turn on the Master and Motor Switches.  

Tether the robot to the network or to the host.  Test at low speed so you don’t collide with an 



obstacle and damage the robot.  Measure the distances moved at three different velocities and 

compare them with the calculated distances from the program.  Explain the difference between 

the measured and calculated distance values.  

 

Experiment 3-2 Closed Loop Motor Control 
 

The word ―setpoint‖ in the name of the Velocity Setpoint VI, used in the previous section of this 

experiment, means that the inputs to the VI are target velocities of the two motors.  When the 

target velocities are the same, the motors should have the same rotational velocities.  

Therefore, the control system needs to know the value of the velocities and automatically send 

signals to the motors to maintain the target values.  Velocity sensors called optical encoders 

connect to the computer via the blue wires extending to DIO 0&1 and DIO 2&3 in Figure 0-2. 

 

An encoder is an electrical mechanical device that converts linear or rotary displacement into 

digital or pulse signals. An optical encoder uses a rotating disk, a light source, and a 

photodetector (light sensor). The disk is mounted on the rotating motor shaft and has patterns of 

opaque and transparent sectors.  The encoder light source, pointed at a photodetector, passes 

through the disk sectors. As the disk rotates, these patterns interrupt the light emitted onto the 

photodetector, generating a digital or pulse signal output. 

 

 
 

Figure 0-10. Optical Encoder 

 

There are two general types of encoders - absolute and incremental encoders.  An absolute 

encoder generates a unique word pattern for every position of the shaft. The tracks of the 

absolute encoder disk, generally four to six, commonly are coded to generate binary code, 

binary-coded decimal (BCD), or gray code outputs. An incremental encoder generates a pulse, 

as opposed to an entire digital word, for each incremental step. Although the incremental 

encoder does not output absolute position, it does provide more resolution at a lower price. For 

example, an incremental encoder with a single code track, referred to as a tachometer encoder, 

generates a pulse signal whose frequency indicates the velocity of displacement. However, the 



output of the single-channel encoder does not indicate direction. To determine direction, a two-

channel, or quadrature, encoder uses two detectors and two code tracks. 

The most common type of incremental encoder uses two output channels (A and B) and two 

code tracks with sectors positioned 90° out of phase, as shown in Figure 0-11.  The two output 

channels indicate both position and direction of rotation. If A leads B, for example, the disk is 

rotating in a clockwise direction. If B leads A, then the disk is rotating in a counter-clockwise 

direction. Therefore, by monitoring both the number of pulses and the relative phase of signals 

A and B, you can track both the position and direction of rotation. Some quadrature detectors 

include a third output channel, called a zero or reference signal, which supplies a single pulse 

per revolution that can be used for precise determination of a reference position. 

 

 
 

Figure 0-11. Quadrature Encoder Output Channels A and B 

 

To determine the angular velocity and acceleration of a wheel from Quadrature Encoder signals 

you can count the number of pulses in a fixed time interval as shown in Figure 0-12.  



 

 
 

Figure 0-12. Velocity estimation with quadrature encoder signals 

  

Calculate the angular velocity with: 

 

 
 

Where, “Encoder Pulses” is the number of quadrature encoder pulses received in the Fixed 

Time Interval. 

 

The following formula can be used to estimate acceleration: 

 

 
 

The optical encoders on the Pitsco DC motors require a 5V supply and produce 100 



counts/revolution (CPR) and 400 pulses/revolution (PPR).  Calculate the distance moved per 

count and pulse.   

 

0.3192 m/revolution / 100 counts/revolution = 0.003192 m/count 

 

0.3192 m/revolution / 400 pulses/revolution = 0.000798 m/pulse 

 

Considering the 400 pulses/revolution and DaNI’s wheel circumference the resolution in linear 

travel distance is 0.000798 m or 0.798 mm. 

 

You can use the encoder information to develop a VI that reports the difference between the 

measured and calculated distances in the Simple Drive Timed VI.  Modify the Simple Drive 

Linear VI developed above to graph the velocity measured by the encoders as shown in Figure 

0-14. 

 

 
 

Figure 0-13. Drive Velocity VI block diagram 

 

The major difference with the Simple Drive VI is adding the Read DC Motor Velocities VI from 

the functions>>Robotics>>Starter Kit>>2.0 palette.  If you display the context help for the VI, 

you will see that the VI has the usual reference and error input and output connections.  It also 

has left and right motor ccw in rads/s outputs.  Search the functions palette for the radians/s to 

RPM expression node conversion.  You can add the negate function to the right output or you 

can add a -1 multiplier to the expression node to accomplish the correction for the ccw direction 

as was done previously for the motor RPM to Write Motor Velocity Setpoint VI programming.  To 

display both outputs on the same chart, add a Bundle Function by searching the functions 

palette.  This function assembles the input elements into a cluster data type (that will be 

explained later).  When the cluster is input to the chart, it displays the elements of the cluster as 

separate plots.  Change the millisecond multiple constant to 5 to send velocity setpoint signals 

and sample the velocities faster to see the variability in the signal. 

 

You will need to drive the robot faster than previous, so modify range of the slider on the front 

panel as shown in Figure 0-14.  Customize the graph: 

 

 Expand the plot legend to two plots by dragging the upper border of the plot legend one 

item higher 

 Widen the plot lines by right clicking on each plot line and choosing Line Width 

 Add a grid as done previously 



 Change the X scale style by right clicking the axis as shown in Figure 0-15, and  

 Add a scale multiplier of 5 to convert sample number to time in ms by right clicking the 

graph and configuring the properties as shown in Figure 0-16.   This is an approximation 

and not the exact t between points as it only accounts for the delay (wait) value and not 

the code execution time.  A better value could be determined with the benchmarking 

code in the Simple Drive Timed VI, but the approximation is adequate for the purposes 

of this section of the experiment. 

 

 
 

Figure 0-14. Drive Velocity VI front panel 

 

 
 

Figure 0-15. Chart X-Scale style configuration 

 



 
 

Figure 0-16. Chart scale customization for the Drive Velocity VI 

 

Save the VI and the project.  Run the VI tethered at a higher motor speed (e.g. 100 RPM) for a 

very short distance and observe the results in the graph.  The results explain the error between 

the calculated and measured distances from running the Simple Drive Timed VI.  The graph 

shows that velocity begins to rise at 40 ms and reaches 95 RPM at about 280 ms so the period 

of acceleration is about 200 ms although there is a small increase between 280 and 345 ms.  If 

you approximate acceleration with a linear function: 

 

V / t ≈ 2.5 m/s2 

where V ≈ 95 RPM * 0.3192 m/revolution / 60 s/min = 0.5 m/s 

t ≈ 200 ms = 0.2 s 

 

The calculated value in the Simple Drive Timed VI did not take this period into account.  As the 

distance driven increases, this period would be a smaller portion and the error would decrease.   

 

Modify the simple drive timed VI to stop automatically after a set distance measurement has 

been exceeded as shown in Figure 0-17 using the following information.   



 

 
 

Figure 0-17. Simple Drive Distance VI block diagram 

 

The main difference in this VI and the previous programs is the use of Shift Registers.  Shift 

Registers reside on the borders of the loop.  They are used instead of tunnels in this VI because 

the time and distances should be accumulated as the program executes.  If tunnels were used, 

the values would reset and not accumulate.  Create a Shift Register by right clicking the loop 

border and selecting Add Shift Register or by right clicking a tunnel and choosing Replace With 

Shift Register.     

 

Shift Registers are very powerful tools because they give you access to computer memory.  As 

shown in Figure 0-18, when you wire data to the left side of the Shift Register, you write the data 

to memory.  When you wire from the right side of the Shift Register, you read the most recent 

data from the memory.  When you write data to the Shift Register, you replace the data that was 

previously there.  When you create a Shift Register on one side of a loop, another Shift Register 

icon appears on the other side automatically, or the cursor takes the shift register shape asking 

you to click on the opposite side of the loop to place the second icon.  The two icons, one on the 

right border and one of the left, represent the same memory.  So, when you wire (write) a new 

value to the right memory icon, that value is available to be wired (read) from on the left icon 

after the loop iterates.  Consequently, you can think of Shift Registers as remembering the data 

from the previous iteration of the loop.  

 

It is usually a good idea to initialize the memory as shown in Figure 0-18 otherwise you might 

read a value from a previous execution of the program.  Initialize the distance memories with the 

value 0, and initialize the time memory with the program start time.  The accumulated tick 

counts are subtracted from the current tick count to determine the elapsed time for the current 

iteration.  The elapsed time for the current iteration is multiplied by the current velocity 

measured by the encoders to calculate the distance traveled during the current iteration.  The 

distance traveled in the current iteration is added to the previous total distance for each encoder 

and written to the Shift Register on the right side of the loop.  The distance for each encoder is 

accumulated in the Shift Registers and the right encoder distance is compared to the user 

defined stop target.  The average, the maximum, or the minimum could have been compared as 

well. 

 

Shift Register 



 
 

Figure 0-18. Shift Registers 

 

Save the VI and save the project.  Run the VI with DaNI tethered to the host.  Figure 0-19 

shows the front panel and example results graph of driving at 0.1 m/s for a 1 m target distance. 

 

 
 

Figure 0-19. Simple Drive Distance VI front panel 

 

Use the VIs developed to characterize the encoders.  Set a straight course of three different 

lengths, say 1 m , 2 m, and 3 m.  Mark it on the floor with string or tape.  Set DaNI at the start of 

the course and oriented to drive straight along the course.  Set the stop distance at each of the 

three lengths.  The X distance is the direction along the length or planned direction of travel.  

The Y distance is perpendicular to the length, or planned direction of travel.  Run the VI so DaNI 

will drive along the course.  Mark the points where DaNI stops.  Measure the actual X and Y 

distances with a tape measure and compare the actual distance values with the values 

measured by the encoders on each wheel.  What is the error?  How does the error compare 

with the encoder resolution?  Did DaNI travel straight?  How does distance driven affect the 

error?  How does velocity affect the error?  Can you use the difference in encoder values 

between the wheels to determine the Y offset? 

 

Does the error change if you reduce the wait time from 250 to 20 ms?  Why? 

 

Use the 20 ms time and add a multiplier to correct the error in total distance driven.  You will 

correct the error in orientation later.  Repeat the experiment are report the change in the error. 

 

If DaNI hit an obstacle and the floor was slick enough that the wheels spin, how would that 

affect the difference between encoder measured distance and actual distance? 

Initialize the shift register memory 

write to the memory read from the memory 



Integrate the ultrasonic and encoder data by creating the VI shown in Figure 0-20.  Arrange the 

front panel as shown in Figure 0-21.  An additional loop was added to allow the user to calibrate 

the angle before driving.  After calibration and setting the distance and velocity, the user clicks 

the Drive button and the main loop executes.  Save the VI and the project.  Run the VI tethered 

to the host.  Figure 0-21shows the results from driving toward a wall. 

 

 
 

Figure 0-20. Ultrasound vs Encoder VI block diagram 

 

 

 
 

Figure 0-21. Ultrasound vs Encoder VI front panel 

 

Repeat the previous experiment on the course with three distance targets adding a wall or other 

obstacle for ultrasonic measurement data.  Compare the error in distance measurements 

between the encoders and PING))) at three different target distances and three different 

velocities.  Which transducer measures distance better and faster at high speed?  Explain. 

 

Does the error change if you reduce the loop wait time from 250 ms to 20 ms?  Why? 

 

In what situations could you use PING))) data to measure distance traveled?  Could you use 

PING))) data to differentiate between a situation where DaNI is stopped by a low obstacle and 

wheel spinning and normal driving?   

 



Try driving with remote control a target distance without measuring the distance with a tape 

measure.  Describe how transducers and computer control can assist humans during driving.  

Describe situations where humans need to supervise DaNI. 

 

Modify the Ultrasound vs Encoder VI so that it will automatically stop DaNI when driving straight 

ahead and PING))) detects an obstacle that is 0.5 m away as shown in Figure 0-22.  Save the 

VI and save the project.  Test it with the motors off by placing an obstacle within 0.5 m to see if 

the program terminates.  Then, test it by driving straight toward an obstacle that PING))) will 

detect. 

 

 
 

Figure 0-22. Avoid Collision VI block diagram 

 

You used the Write DC Motor Velocity Setpoints VI in several previous programs to drive DaNI 

at a user requested velocity.  The code compares the velocity measured with the encoder to the 

requested velocity, or setpoint.  The code includes a control algorithm that automatically 

accelerates the motors to the setpoint and tries to maintain the setpoint.  The code is included in 

the FPGA bitfile and is explained in the following.   

 

The FPGA bitfile implements a Proportional-Integral-Derivative (PID) control algorithm.  As the 

name suggests, PID algorithm consists of three parts: proportional, integral and derivative.  

Each part includes a coefficient which is varied to get optimal response.  The PID algorithm 

reads the encoder and calculates the error between the target and the measured values.  Then 

it computes the desired motor output to correct the error by calculating proportional, integral, 

and derivative responses and summing those three components.  In a typical control system, 

the process variable is the system parameter that needs to be controlled, in this instance 

rotational velocity in radians/second.  A transducer, in this instance the encoders, measures the 

process variable and provides feedback to the control system. The set point is the desired or 

command value for the process variable, such as 10 rad/s. At any given moment, the difference 

between the process variable and the set point is used by the control system algorithm 

(compensator), to determine the desired actuator output to drive the system (plant). For 

instance, if the measured velocity process variable is 9 rad/s and the desired set point is 10 

rad/s, then the actuator output specified by the control algorithm might be to increase the motor 

velocity. This is called a closed loop control system, because the process of reading sensors to 



provide constant feedback and calculating the desired actuator output is repeated continuously 

and at a fixed loop rate as shown in Figure 0-23. 

 

 
 

Figure 0-23. Block diagram of a typical closed loop system. 

 

In many cases, the actuator output is not the only signal that has an effect on the system. For 

instance the robot might drive from one type of surface onto another which causes a change in 

the velocity.  Such a change is referred to as disturbance. You design the control system to 

minimize the effect of disturbances on the process variable. 

 

Control system performance can be measured by applying a step function as the set point 

command variable, and then measuring the response of the process variable. Commonly, the 

response is quantified by measuring defined waveform characteristics. Rise Time is the amount 

of time the system takes to go from 10% to 90% of the steady-state, or final, value. Percent 

Overshoot is the amount that the process variable overshoots the final value, expressed as a 

percentage of the final value. Settling time is the time required for the process variable to settle 

to within a certain percentage (commonly 5%) of the final value. Steady-State Error is the final 

difference between the process variable and set point. Deadtime is a delay between when a 

process variable changes, and when that change can be observed. The interval of time between 

calls to a control algorithm is the Loop Cycle Time. Systems that change quickly or have 

complex behavior require faster control loop rates. 

 

 
 

Figure 0-24. Response of a typical PID closed loop system. 

 

The PID algorithm addresses each of these measures.  The proportional component depends 



only on the difference between the set point and the process variable. This difference is referred 

to as the Error term as shown in Error! Reference source not found..  

 

 

 

Figure 0-25. Block diagram of a basic PID control algorithm. 

 

The proportional gain (Kc) determines the ratio of output response to the error signal. For 

instance, if the error term has a magnitude of 10, a proportional gain of 5 would produce a 

proportional response of 50. In general, increasing the proportional gain will increase the speed 

of the control system response and decreases the rise time. However, if the proportional gain is 

too large, the process variable will begin to oscillate. If Kc is increased further, the oscillations 

will become larger and the system will become unstable and may even oscillate out of control. 

 

The integral component sums the error term over time. The result is that even a small error term 

will cause the integral component to increase slowly. The integral response will continually 

increase over time unless the error is zero, so the effect is to drive the Steady-State error to 

zero. Steady-State error is the final difference between the process variable and set point.  

 

The derivative component causes the output to decrease if the process variable is increasing 

rapidly. The derivative response is proportional to the rate of change of the process variable. 

Increasing the derivative time (Td) parameter will cause the control system to react more 

strongly to changes in the error term and will increase the speed of the overall control system 

response. Most practical control systems use very small derivative time (Td), because the 

Derivative Response is highly sensitive to noise in the process variable signal. If the sensor 

feedback signal is noisy or if the Control Loop Rate is too slow, the derivative response can 

make the control system unstable 

 
The process of setting the optimal gains for P, I and D to get an ideal response from a control 
system is called tuning. There are different methods of tuning including the trial and error and 
the Ziegler Nichols methods. 
 
In the trial and error method, the I and D terms are set to zero first and the proportional gain is 
increased until the output of the loop oscillates. As one increases the proportional gain, the 
system becomes faster, but care must be taken not make the system unstable. Once P has 
been set to obtain a desired fast response, the integral term is increased to stop the oscillations. 
The integral term reduces the steady state error, but increases overshoot. Some amount of 



overshoot is always necessary for a fast system so that it could respond to changes 
immediately. The integral term is adjusted to achieve a minimal steady state error. Once the P 
and I have been set to get the desired fast control system with minimal steady state error, the 
derivative term is increased until the loop is acceptably quick to its set point. Increasing 
derivative term decreases overshoot and yields higher gain with stability but would cause the 
system to be highly sensitive to noise.  

 
The Ziegler-Nichols method is similar to the trial and error method wherein I and D are set to 
zero and P is increased until the loop starts to oscillate. Once oscillation starts, the critical gain 

Kc and the period of oscillations Pc are noted. The P, I and D are then adjusted as per Table 0-1. 

 

Table 0-1. Ziegler-Nichols tuning PID relations 

 

Control P Ti Td 

P 0.5Kc - - 

PI 0.45Kc Pc/1.2 - 

PID 0.60Kc 0.5Pc Pc/8 

 

Evaluate the rise time, percent overshoot, settling time and steady state error of the DaNI 

control algorithm.  Set the DaNI frame on a box or small platform so that the wheels are not 

touching a surface and can turn freely.  Smooth the data from the Drive Velocity VI with the 

Mean PtByPt VI (Functions>>Signal Processing>>Point by Point>>Prob & Stat palette) as 

shown in Figure 0-26. Save the VI and the project. Run the VI for a short time at a high velocity 

to obtain results similar to Figure 0-27.   

 

 
 

Figure 0-26. Drive Velocity Smoothed Vi block diagram 

 

 



 
 

Figure 0-27. Drive Velocity Smoothed front panel 

 

The previous discussion focused on the drive motors.  It is also important to understand the 

control of the servo motor that pans the PING))) mount.  To become more familiar with the servo 

motor, study the information on the Pitsco web site for the 180 servo, part number W39080.  

Note that the servo requires input from a controller with controllers capable of generating a 

pulse range from 600 usec to 2400 usec.  Refer to Figure 2-1 and note that the motor driver isn’t 

necessary since the servo input is a pulse signal from DIO7.  The servo motor shaft can be 

positioned to specific angular positions by the length of the pulse signal. As long as the signal 

exists on the input line, the servo will maintain the angular position. As the coded signal 

changes, the angular position changes.  The servo includes a potentiometer that is connected to 

the output shaft and control circuitry to monitor the current angle of the servo motor. 

 

Create a VI that will pan the PING))) mount while driving straight ahead like the one shown in 

Figure 0-28. Note the use of shift registers to accumulate the servo angle value and the 

Comparison function to reverse the direction when the absolute value of the servo angle 

exceeds 65.  Save the VI and the project.  Test it with the motors off. Then, drive toward an 

obstacle.   

 



 
 

Figure 0-28.  Pan and Avoid Collision VI block diagram 

 

 

 

 

 

 

 

 



Experiment 4 - Kinematics 

Instructor’s Notes 

This experiment requires that the previous experiments be completed.  Similar experimental 

area and tools used in the previous experiments are used here. 

Goal 

Discover the steering frame.  Add motor control of turning and rotating to provide the capability 

to drive from point A to point B. 

 

Learn about hierarchical programming and state machine architectures to build more 

sophisticated programs to sequence control tasks like rotate and drive to navigate from point A 

to point B. 

 

 

Required Components 
 

Experimental area similar to that used in previous experiments. 

  

Linear distance measuring tool like a ruler, meter stick, or tape measure. 

  

Angle measuring tool like a protractor. 

  

Background 

 

Students should study Siegwart et al (2011) chapter 3 

Experiment 4-1 Turning and Rotating 
 

Kinematics is the fundamental understanding of how a mechanism (DaNI in this instance) 

moves.  It doesn’t consider the forces involved, just the motion. Kinematics is critical to 

determining where a robot can go and how to get it there.  In this instance, motion means 

driving from point A to point B given the position and orientation in a reference coordinate 

system such as one shown in Figure 0-1.  Global coordinates describe the area where the robot 

operates, and local coordinates describe the orientation and position of the robot. The total 

dimensionality of the DaNI differential drive robot chassis on the plane is three, two for position 

in the plane and one for orientation along the vertical axis, which is orthogonal to the plane. 



 

 

 
 

Figure 0-1. Local and global coordinate frames (Siegwart et al (2011)) 

 

 

Using the orientation of the local coordinate system in Figure 0-1, and to review the previous 

experiment, what is the equation that defines the distance moved in straight forward driving in 

terms of linear robot speed (velocity in the x direction, the robot linear forward velocity)?  What 

is the equation that expresses the relationship between motor rotational velocity and wheel 

distance traveled? 

 

Lw = d/revolution * ̇  w * t 

 

Where Lw = wheel distance traveled,  

d = wheel diameter = 4 in for DaNI, and  

̇  w = wheel (= motor for DaNI) rotational velocity (radians/s) 

 

If both wheels are driving forward at the same velocity with no slippage, what is the equation 

that expresses the relationship between the wheel distance traveled and the robot linear velocity 

ẋ  r? 

 

ẋ  r = Lw/t 

 

Consider turning in addition to driving straight forward.  What is the equation that defines the 

angle  rotated about the left wheel and the robot rotational velocity, ̇  r, in terms of the linear 



velocity of the right wheel, ẋ  r1 (wheel 1)?  (The right wheel drives while the left wheel does not 

drive or roll but remains at the same point.) 

 

 = 360/2l * wheel distance traveled 

 

Where l = distance between each wheel and P = 6.5 in for DaNI 

Circle perimeter distance = 2l 

Wheel distance traveled = d/rotation * ̇  w * t 

 

What equation relates wheel rotational velocity, ̇  w, (Rad/s) to robot rotation velocity, , (/s) 

when turning about one wheel? 

 

 = (̇  w rad/s) (1/2 rev/rad) (4 in/rev) (360/2*13 /in) = 8.8149 ̇  w 

 

Create a VI by modifying the Simple Drive Distance VI that will stop DaNI after it turns a user 

defined number of degrees about the left wheel as shown in Figure 0-2 and Figure 0-3.  

Connect a constant of 0 to the left wheel Write Setpoint VI.  Change the conversion as shown 

per the equation above.  Add an absolute value for stopping for either a cw or a ccw turn. Modify 

the front panel as shown in Figure 0-3. 

 

 
 

Figure 0-2. Simple Turn VI block diagram 

 

 



 
 

Figure 0-3. Simple Turn VI front panel 

 

Measure the error in position after turns of 90, 180, and 360. Explain any error. 

 

Turn 90 in the same direction four times and compare the error with turning 360.  Explain any 

difference between the two errors. 

 

If you want to move from point A (the start pose) to point B (the goal pose) in Figure 0-4, you 

might first point the robot at point B by rotating in place.  What must the two motors do to turn in 

place, so that only the orientation, and not the coordinates, of the robot change? 

 

 
 

Figure 0-4. Frames to move from start to goal (after Siegwart et al (2011)) 

 

What equation relates wheel rotational velocity, ̇  w, (Rad/s) to robot rotation velocity, , (/s) 

when turning the robot in place? 

 



 = (̇  w rad/s) (1/2 rev/rad) (4 in/rev) (360/2*13 /in) = 17.6295 ̇  w 

 

Modify the Simple Drive Distance VI to create a VI, like the one shown in Figure 0-5, that will 

rotate the robot in place a user selected number of degrees and stop.  Delete the Negate 

function so the wheels will turn in opposite directions. 

 

 
 

Figure 0-5. Simple Rotate VI block diagram 

 

 
 

Figure 0-6. Simple Rotate VI front panel 

 

Measure the error in position after rotations of 90, 180, and 360. 

 

Compare the error in rotating with the error in turning and explain the difference. 

 

Add error correction multipliers to the Rotate and Turn VIs.  Do the corrections work equally well 

for all differential drive robots?  For all DaNI robots?  Why? 

 

Repeat the 90, 180, and 360 rotation tests at three different speeds and compare the results.  

Explain the difference in the error at different speeds. 

 

 



Experiment 4-2 User Choice: LabVIEW Case Structure 
and Enum Data Type 
 

Use the information in the following to modify the Simple Turn VI to Create a VI where the user 

has the option of rotating or turning either cw or ccw.  Modify the front panel by changing the 

label on the knob to Angle (deg).  Add an enumerated control for the user to select one of four 

actions: Turn cw, Turn ccw, Rotate cw, Rotate ccw. 

 

The enumerated data type (enum) passes integer numeric values but is very user friendly 

because it displays text (string data type).  To create the control, open the 

Controls>>Modern>>Ring & Enum palette and drag the Enum control onto the front panel.  

Then right click the enum control and choose Properties or Edit Items.  The window shown in 

Figure 0-7 opens.  Choose the Edit Items tab and type the names of the four text items in the 

order shown.  If you type them in the wrong order, it is easy to modify the list with the Move Up 

and Move Down buttons. 

 

 
 

Figure 0-7. Enum control properties window Edit Items tab 

 

The enum will appear on the front panel as shown in Figure 0-8. 

 



 
 

Figure 0-8. Simple Rotate or Turn VI front panel 

 

In this instance, Turn cw has the numeric value 0, Turn ccw is one, Rotate cw is two, and Rotate 

ccw is three.  The user doesn’t see or need to remember the numeric values.  The user just 

selects the string from the list that represents the action of interest. The numeric representation 

of the enumerated type control is an 8-, 16-, or 32-bit unsigned integer.  Right-click the control 

and select Representation from the shortcut menu to change the representation of the control.  

You cannot enter undefined values in enumerated type controls, and you cannot assign specific 

numeric values to items in enumerated type controls. You are limited to the four items listed 

above unless you edit the list.   

 

When you wire an enumerated type control to the selector terminal of a Case structure 

(explained in the following), LabVIEW matches the cases to the string values of items in the 

control, not the numeric values. When you wire an enumerated type control to the selector 

terminal of a Case structure, you can right-click the structure and select Add Case for Every 

Value to create a case for the string value of each item in the control.  

 

Modify the block diagram of the Simple Rotate VI  as shown in Figure 0-9 using the information 

in the following.  The major change is adding a Case structure from the Functions>>Structures 

palette.  The Case structure supports alternatives or branches in the flow of code.  It is similar to 

switch statements or if...then...else statements in text-based programming languages.  You 

place it on the block diagram using the same procedure as the While loop by clicking to pin the 

upper left corner and moving the cursor to the lower right corner and clicking again.  You can 

make space on the block diagram before adding the structure by holding down the Ctrl key, 

clicking and dragging the cursor in the direction you need space, downward in this instance. 

 



 
 

Figure 0-9. Simple Rotate and Turn VI block diagram 

 

When you add the Case structure, it has the configuration shown in Figure 0-10.  The structure 

contains one or more subdiagrams, or cases, exactly one of which executes when the structure 

executes. The value wired to the selector terminal determines which case to execute and can 

be Boolean, string, integer, enumerated type, or error cluster. The configuration shown in Figure 

0-10 is Boolean which is the default configuration when the structure is first placed on the block 

diagram.   It has two cases, True and False.  If the input to the Selector Terminal is True, the 

code in the True case executes.  If False, the code in the False case executes. 

 

 

 

 
 

Figure 0-10. Default Case structure 

 

You need four cases to match the enum control created above.  You could right-click the 

structure border to add or delete cases, using the Labeling tool to enter value(s) in the case 

selector label and configure the value(s) handled by each case.  If you enter a selector value 

that is not the same type as the object wired to the selector terminal, the value appears red. 

This indicates that the VI will not run until you delete or edit the value.  To avoid errors and to 

save time, the best way to configure for enum data type is to wire the enum control icon to the 

Selector Terminal.  The structure will automatically morph to the enum data type configuration 

shown in Figure 0-9.  However, only two cases will be present as that is all there were in the 

default configuration.  To add the other cases, right click the border of the structure and choose 

Add Case For Every Value from the short cut menu. 

 

Because of the possible round-off error inherent in floating-point arithmetic, you cannot use 

floating-point numbers as case selector values. If you wire a floating-point value to the case, 

LabVIEW rounds the value to the nearest integer. If you type a floating-point value in the case 

Case Selector Label 

Selector Terminal 



selector label, the value appears red to indicate that you must delete or edit the value before the 

structure can execute. 

 

Create code in the four cases as shown in Figure 0-11.  You can wire into and out of the Case 

structure through tunnels, the same as with a loop.  The input tunnels are on the left border.  In 

this instance, there is only one input tunnel: the Robot Velocity converted to wheel (motor) ccw 

velocity in rads/s as shown in Figure 0-9.  This value is the same in all cases.  The output 

tunnels are on the right border.  There are three outputs in this instance: the left ccw motor 

velocity setpoint, the right ccw motor velocity setpoint, and the conversion factor for motor 

velocity in rads/s to robot rotate velocity in /s.  The left ccw motor velocity setpoint is equal to 

the input in the Turn and Rotate cw cases.  It is 0 in the Turn ccw case as the other wheel drives 

and turns about the left wheel.  It is negative in the Rotate ccw case as the wheel turns cw in 

this instance.   The right ccw motor velocity setpoint is 0 in the Turn ccw case as the other 

wheel drives and turns about the right wheel.  It is negative in the Turn and Rotate ccw cases.  It 

is equal to the input in the Rotate cw case.  The conversion constants are different in the Turn 

and Rotate cases since the turn radius is twice the rotate radius.  You can incorporate error 

correction multipliers in the cases as well if appropriate.  When you wire to the border in the first 

case, a tunnel appears, but it is not filled with color as shown.  After you wire all four cases to 

this tunnel, the tunnel will fill with color.  A common error with Case structures is neglecting to 

complete the wiring in all the cases. When you wire to an object outside the structure, an error 

results if you do not connect a source in all the cases.  You can configure the output tunnels to 

use the default value instead of wiring to them; but it is not recommended as it makes programs 

difficult to debug and reduces readability. 



 

       
 

       
 

Figure 0-11. Code in the four cases 

 

Notice that the size of the control and indicator icons on the block diagram are smaller in Figure 

0-9 than in previous block diagram figures.  The sizes were reduced to create space for 

additional code and still allow the diagram to fit on the monitor.  You can make this change 

individually by right clicking on each icon and unchecking View As Icon.  Or, you can change it 

in by configuring the programming environment by choosing Tools from the menu bar and 

choosing Options in the drop down menu.  The dialog box shown in Figure 0-12 opens.  

Uncheck Place front panel terminals as icons to use the smaller terminal shape instead of the 

large icon for future controls and indicators.  You will have to make the change individually for 

existing objects. 

 

 
 

Figure 0-12. Tools>>Options configuration dialog box 

 

Rearrange the wires and icons on the block diagram as shown in Figure 0-9, adding the 

Absolute Value function to stop the VI automatically in either cw or ccw directions.   

 



Experiment 4-3 Using Hierarchical Programming to 
Drive from Start to Goal 
 

You can now integrate the concepts with the previous experiment and drive from point A to point 

B considering the reference frames in Figure 0-4.  You can do this by executing two separate 

programs, the Simple Drive Distance VI and the Simple Turn and Rotate VI.  If DaNI needs to 

turn 90 ccw ( in Figure 0-4) and drive forward 1m (in Figure 0-4) to reach the goal point, 

execute the rotation VI and then the drive VI.  Executing two VIs is a little cumbersome, so 

combine them into one program by creating two sub VIs. 

 

After you build a VI, you can use it in another VI. A VI called from the block diagram of another 

VI is called a subVI. You can reuse a subVI in other VIs. To create a subVI, you need to build a 

connector pane and create an icon.  

 

Figure 0-13 shows an example from the Turn and Rotate VI that calls the Write DC Motor 

Velocity Setpoints VI.  The icon is a graphic that shows a pencil for writing and a motor.  There 

are four connections for input wires on the left of the icon and two connections for outputs on 

the right side of the icon.  The input and output connections correspond to controls and 

indicators respectively on the subVI front panel.  The subVI controls and indicators receive data 

from and return data to the block diagram of the calling VI.  A subVI node corresponds to a 

subroutine call in text-based programming languages.  A block diagram that contains several 

identical subVI nodes calls the same subVI several times.   

 

 
 

 

Figure 0-13. Example SubVI Icon and connections 

 

Not all of the code in the two VIs needs to be placed in the subVIs.  Place the code in the 

dashed rectangle in Figure 0-14 in the subVI and place the code outside in the main VI.  As 

explained in the previous paragraph, you will add controls and indicators to the subVI front 

panel to pass data into and out of the main VI for these objects. 

 

subVI icon graphic 

Input connections Output connections 



 
 

Figure 0-14. Divide code between main and subVI 

 

Delete the objects that will not be in the subVI, or cut and paste them to a main VI and save and 

close it.  You will create the main VI later.  Delete the chart on the subVI front panel as you will 

not display the front panel of the subVI while it executes.  Add indicators to the Shift Registers 

on the right border of the loop, as shown, to display the final angle rotated.  You could create an 

array of the angle values from each loop iteration and pass the array to the calling VI for 

graphing if you want, but arrays aren’t covered until later in this set of experiments.  Right click 

the tunnels where the objects were deleted and create controls or indicators as shown in Figure 

0-15.  Change the error control and indicator and the starter kit labels as shown.   

 

 
 

Figure 0-15. Controls and indicators for subVI to main VI data transfer 

 

Arrange the front panel objects similar to Figure 0-16. 

 



 
 

Figure 0-16. Rotate SubVI front panel 

 

You need to build the connector pane identified in Figure 0-16. The connector pane is a set of 

terminals that corresponds to the controls and indicators of that VI, similar to the parameter list 

of a function call in text-based programming languages. The connector pane defines the inputs 

and outputs you can wire to the VI so you can use it as a subVI. A connector pane receives data 

at its input terminals, passes the data to the block diagram code through the front panel 

controls, and receives the results at its output terminals from the front panel indicators.  Each 

rectangle on the connector pane represents a terminal. Use the rectangles to assign front panel 

controls and indicators as inputs and outputs.  The default connector pane pattern is 4 x 2 x 2 x 

4. You can select a different pattern by right-clicking the connector pane and selecting Patterns 

from the shortcut menu.  

 

To link the controls and indicators to boxes on the connector pane, click on a rectangle, it will 

turn black as shown in Figure 0-17, and then click on an object as shown in Figure 0-18.  The 

connector pane rectangle will change from black to the color that represents the data type of the 

front panel object.  Repeat this for the remaining front panel objects, placing the controls on the 

left and indicators on the right, to make the assignments shown in Figure 0-19.  It is customary 

to reserve the upper left and right rectangles for reference wires and the lower left and right 

ones for error wires. 

Icon 

Connector 

Pane 



 

 
 

Figure 0-17. Click on a rectangle in the connector pane to assign it to a control or indicator 

 

 
 

Figure 0-18. Click on a front panel object after clicking on the connector pane rectangle to link 
the two 

 

 

 
 

Figure 0-19. Rotate SubVI connector pane assignments 

 

You can designate which inputs and outputs are required, recommended, and optional to 

prevent users from forgetting to wire subVI terminals.  For terminal inputs, required means that 

the block diagram on which you placed the subVI will be broken if you do not wire the required 

inputs.  Required is not available for terminal outputs.  For terminal inputs and outputs, 

recommended or optional mean that the block diagram on which you placed the subVI can 

execute if you do not wire the recommended or optional terminals.  If you do not wire the 

terminals, the VI does not generate any warnings.  Right-click a terminal on the connector pane 

and select This Connection Is from the shortcut menu.  A checkmark indicates the terminal 

setting.  Select Required, Recommended, or Optional.  You also can select 

Tools»Options»Front Panel and place a checkmark in the Connector pane terminals default to 

required checkbox.  This option sets terminals on the connector pane to required instead of 

recommended.  This applies to connections made using the wiring tool and to subVIs created 

using Create SubVI.  

 

LabVIEW gives the icon a default graphic, but it is better to create your own that better 

represents the functionality of the subVI.  Right click the icon on the front panel and choose Edit 

Icon.  The icon editor shown in Figure 0-20 appears.  Use the tools on the right pane that 

resemble the PC Paint drawing program to select and delete the LabVIEW default graphic.  

Leave the border.  Select a graphic from the Glyphs library as shown and position it within the 

border.  If there isn’t an appropriate glyph, you can use the tools to draw a graphic.  You can 

add text as well. 



 

 

 
 

Figure 0-20. Icon Editor 

 

LabVIEW automatically creates context help information for the subVI, so after you place it on a 

block diagram, you can right click on it, choose help (or move the mouse over the icon and hit 

Ctrl H), and the help window showing information similar to that in Figure 0-19 appears.  In the 

Context Help window, the labels of required terminals appear bold, recommended terminals 

appear as plain text, and optional terminals appear dimmed. The labels of optional terminals do 

not appear if you click the Hide Optional Terminals and Full Path button in the Context Help 

window. You can add additional information to the help by adding documentation to the VI.  

Access the documentation dialog by choosing File>>VI Properties and selecting documentation 

from the Category drop down menu as shown in Figure 0-21.  You can do this for any VI. 



 

 
 

Figure 0-21. Documentation  

 

There are several different ways to place the subVI on the block diagram of a main or calling VI.   

You can click the Select a VI icon or text on the Functions palette, navigate to a VI, double-click 

the VI or drag the VI to the block diagram to create a subVI call to that VI.  If necessary, display 

the Functions palette by selecting View»Functions Palette.  Wire the subVI terminals to other 

nodes on the block diagram.  You also can place an open VI on the block diagram of another 

open VI. Use the Positioning tool to click the icon in the upper right corner of the front panel or 

block diagram of the VI you want to use as a subVI, and drag it to the block diagram of the other 

VI.   You can also drag a VI or control from the file system (like the Windows Explorer) to a 

block diagram.  If you are using a LabVIEW project, you also can place a VI from the Project 

Explorer window on the block diagram of another open VI. Select the VI you want to use as a 

subVI from the Project Explorer window, and drag it to the block diagram of the other VI. 

 

You can edit a subVI by using the Operating or Positioning tool to double-click the subVI on the 

block diagram. When you save the subVI, the changes affect all calls to the subVI, not just the 

current instance.  

 

When LabVIEW calls a subVI, ordinarily the subVI runs without displaying its front panel. If you 

want a single instance of the subVI to display its front panel when called, right-click the subVI 

icon and select SubVI Node Setup from the shortcut menu. If you want every instance of the 

subVI to display its front panel when called, select File»VI Properties, select Window 

Appearance from the Category pull-down menu, and click the Customize button.  

 

Once you create a subVI you can use it in many applications and in several locations in a calling 

VI.  But first, you should test it thoroughly.  It might not function on its own, so you might have to 

develop a separate VI, sometimes called a wrapper VI, just for testing.  You can test the subVI 

in this instance by developing the main (calling) VI in two phases.  The first phase is testing the 

rotate functionality with the wrapper VI shown in Figure 0-22.  Create this VI by copying code 

from previous VIs, inserting the subVI icon and connecting the reference and error wires.  Then 



right click the other subVI icon terminals and create controls or indicators as appropriate.  Test 

the subVI thoroughly with several different angles for each action. 

 

 
 

 
 

Figure 0-22. First phase Rotate and Drive VI subVI tester 

 

Use the techniques from the previous sub VI to create another sub VI for driving straight from 

the Simple Drive Distance VI as shown in Figure 0-23.  Test it separately from the Rotate VI in 

the wrapper.  After testing, combine the VIs as shown in Figure 0-24 to create a VI that will 

rotate and drive to move DaNI from point A to point B. 

 

 



 
 

Figure 0-23. Drive Straight subVI 

 

 

 
 

 
 

Figure 0-24. Rotate and Drive VI 

 

This VI accepts angle and distance inputs.  You could modify it to accept poses including 

orientation and coordinates at A and B and develop a subVI to calculate the angle and distance. 



Experiment 4-4 Steering Frame 
 

Review the block diagram of the Roaming VI used in experiment 1 shown in Figure 0-25. This 

section of the experiment will explain how it moves from point A to point B in contrast to the 

code you developed in the previous section.  You discovered how to use all of the VIs circled in 

the upper path in previous experiments.  This section will explain two of the VIs below this path: 

Create Starter Kit 2.0 Steering Frame VI and Apply Velocity to Motors VI.   

 

 
 

Figure 0-25. Roaming VI block diagram showing VIs used previously and VIs to be studied in 
this experiment 

 

Build the VI shown in Figure 0-26 and study the following information to get some experience 

with the Steering Frame and Apply Velocity VIs.  In addition, you will learn about the LabVIEW 

State Machine Architecture.  The important differences with previous programs are explained in 

the following. 

 

 
 

Used in  

previous VIs 

To be used in 

the next VI 



 
 

 
 

Figure 0-26. Steering Frame Drive State Machine 

 

Begin with the Create Steering Frame VI.  It is available from the Functions>>Robotics>>Starter 

Kit>>2.0 palette.  It is a specific instance of the general Create Steering Frame VI that can be 

applied to a variety of mobile robots.  The Create Steering Frame, defines the wheel type and 

the wheel geometry relative to the robot frame. 

 

The general instance, shown in Figure 0-27 is available in Functions>>Robotics>>Steering 

palette.  It has a drop down menu allowing you to select different instances of the VI as shown.  

VIs with this capability are called polymorphic.  The drop down allows you to create a steering 

frame for several of the steering types described in Siegwart et al (2011).  The type appropriate 

for DaNI 2.0 is differential. 



 

 

  
 

Figure 0-27. General Steering Frame Polymorphic VI 

 

You can define your own instance of steering frame by selecting the default instance whose 

help information is shown in Figure 0-28.  The User Defined instance gives insight into the type 

of information that the steering frame writes to computer memory.  For example, you can specify 

the types of wheels on the robot with the Create Wheel VI described below.  You can specify 

the x and y positions of all of the wheels relative to the center of the steering frame.  You can 

specify the angles of the wheels relative to the direction of travel. When this VI executes, it 

places all of the information in computer memory for use by other VIs in a program and creates 

a reference number that can be wired to down stream VIs so they can access the memory. 

 

 
Figure 0-28. User Defined Steering Frame Help Information 

 

The Create Steering Frame VI accepts input from the Create Wheel VI where you can choose a 

polymorphic instance as shown in Figure 0-29.  If you choose the Fixed Wheel instance, as is 

appropriate for DaNI 2.0, you can enter the wheel parameters including radius, gear ration, and 

forward rotation direction as shown. 



 

 

 

 
 

Figure 0-29. Create Wheel Polymorphic VI showing help for the wheel parameters 

 

The specific instance of the create steering frame VI in Functions>>Robitics>>Starter Kit>>2.0 

palette that is shown on the block diagram of Figure 0-26 does all of the configuration for you 

using information specific to DaNI 2.0 so the block diagram icon connections are limited to error 

wires and the reference out wire. 

 

The Apply Velocity to Motors VI converts the robot center velocity to wheel angular velocities.  

You can choose between two polymorphic instances: Frame and Arc.  Frame is the appropriate 

instance for DaNI 2.0.  The help information for this VI is shown in Figure 0-30. 

 



 
 

Figure 0-30. Apply Steering Frame Velocity to Wheels  help information 

 

The steering frame velocity input is an array data type (explained in the next section of this 

experiment) of three double precision floating point values: 

 

x_dot = lateral velocity which is 0 for a differential drive robot like DaNI 2.0 

y_dot = forward velocity  

theta_dot = angular velocity  

 

If a velocity that is higher than the maximum velocities set for DaNI 2.0, the value is coerced 

down to the maximum allowed velocities.  The maximum forward velocity is 0.5 and the 

maximum angular velocity is 2 rads/s. Note that these values are set at 0, 0.1, and 0.3 

respectively in Figure 0-26. 

 

Experiment 4-5 Grouping Steering Frame and Other 
Data in LabVIEW with Arrays and Clusters 
 

The array data type groups element together in memory and gives them a common name.  In 

this instance, one name ‖steering frame velocity‖ represents all three values.  You don’t need 

three separate names.  In addition, these three values are stored in contigouos (adjacent) 



memory.  An array consists of elements and dimensions. Elements are the data that make up 

the array. A dimension is the length, height, or depth of an array. An array can have one or 

more dimensions and as many as (231) – 1 elements per dimension, memory permitting. The 

array used here is one dimensional.  Refer to LabVIEW Help for information on 

multidimensional arrays.  You can build arrays of numeric, Boolean, path, string, waveform, and 

cluster data types (explained below). The array of interest here is numeric.  Array elements are 

ordered. An array uses an index so you can readily access any particular element. The index is 

zero-based, which means it is in the range 0 to n – 1, where n is the number of elements in the 

array. In this instance there are 3 elements so n = 3.  There are three index values 0, 1, and 2.  

Y dot is at index 1.  So to refer to the value of Y dot, use steering frame velocity(1). 

 

To create the array constant for the block diagram, place the Apply Velocity to Motors VI on the 

block diagram, right click the connection for the array and choose create constant.  The 

constant will appear as shown in Figure 0-31.  You could also select an array constant on the 

Functions palette, place the array shell on the block diagram, and place a DBL numeric constant 

in the array shell. When it is first placed on the block diagram, the array has two rectangles for 

displaying and changing values.  The left rectangle with the increment and decrement buttons in 

the index.  If the elements in the array have different values, when you increment the index, the 

value at the index will change to show what value is stored at that index.   

 

 
 

Figure 0-31. Array constant 

 

Because there are index and value rectangles in array objects, you must use the mouse 

carefully when selecting.  You can select the entire array by carefully choosing the outer border, 

or you can select the element value only as shown in Figure 0-32.  Select the entire array and 

move it to the position shown in Figure 0-26. 

 

  
 

Figure 0-32. Selecting array components 

 

Since the array is small, you can display all three elements without cluttering the block diagram, 

so grab the lower handle and drag it down as shown in Figure 0-33.  If you try to display a 

column or row that is out of the range of the array dimensions, the array appears dimmed to 

indicate that there is no value defined, and LabVIEW displays the default value of the data type. 

Index 

Value at Index 



 

 
 

Figure 0-33. Show all three elements of the array 

 

To give values to the elements, double click the element and type in the value.  Notice that there 

are two cases in Figure 0-26 with different values.  One case is the rotate case where the lateral 

and forward velocity values are 0.  The other case is the drive case where the lateral and 

angular values are 0. 

 

The coerced steering frame output from the Apply Velocity to Motors VI that is wired to the 

Motor Velocity Setpoints VI is also an array, but it only has two values, the setpoints for the left 

and right motors.  To make this match the inputs required for the Motor Velocity Setpoints VI, 

the values have to changed from an array data type to individual DBL floating point scalar 

values.  This can be done with the Index Array Function as shown in Figure 0-26. 

 

Arrays are very useful data structures, so LabVIEW contains a large number of functions as 

shown in Figure 0-34 to manipulate them. 

 



 
 

Figure 0-34. Array functions 

 

Another output from the Apply Velocity to Motors VI, calculated wheel states, is a cluster data 

type.  Like arrays, clusters group data elements.  But, unlike arrays whose elements must be of 

the same type, cluster elements can be different types. Clusters also differ from arrays in that 

they are a fixed size. Like an array, a cluster is either a control or an indicator. A cluster cannot 

contain a mixture of controls and indicators.  An example of a cluster is the LabVIEW error 

cluster, which combines a Boolean value, a numeric value, and a string. A cluster is similar to a 

record or a struct in text-based programming languages. 

 

Bundling several data elements into clusters eliminates wire clutter on the block diagram and 

reduces the number of connector pane terminals that subVIs need. The connector pane has, at 

most, 28 terminals but that pattern is very difficult to wire. The default 4x2x2x4 has 12.  If your 

front panel contains too many controls and indicators that you want to pass to another VI, group 

some of them into a cluster and assign the cluster to a terminal on the connector pane. 

 

Most clusters on the block diagram have a pink wire pattern and data type terminal, but error 

clusters have a dark yellow wire pattern and data type terminal, and clusters of numeric values, 

sometimes referred to as points, have a brown wire pattern and data type terminal. You can 

wire brown numeric clusters to Numeric functions, such as Add or Square Root, to perform the 

same operation simultaneously on all elements of the cluster. 



 

You can unbundle all cluster elements at once using the Unbundle function. You can use the 

Unbundle By Name function to unbundle individual or a subset of cluster elements by name. 

The Unbundle by Name function is good to use because it self documents your code.   

 

Cluster elements have a logical order unrelated to their position in the shell. The first object you 

place in the cluster is element 0, the second is element 1, and so on. If you delete an element, 

the order adjusts automatically. The cluster order determines the order in which the elements 

appear as terminals on the Bundle and Unbundle functions on the block diagram. You can view 

and modify the cluster order by right-clicking the cluster border and selecting Reorder Controls 

In Cluster from the shortcut menu.  

 

To wire clusters to each other, both clusters must have the same number of elements. 

Corresponding elements, determined by the cluster order, must have compatible data types. For 

example, if a double-precision floating-point numeric value in one cluster corresponds in cluster 

order to a string in the another cluster, the wire on the block diagram appears broken and the VI 

does not run. If the numeric values are different representations, LabVIEW coerces them to the 

same representation.  

 

Use the Cluster functions to create and manipulate clusters. For example, you can perform 

tasks similar to the following: 

 

 Extract individual data elements from a cluster.  

 Add individual data elements to a cluster.  

 Break a cluster out into its individual data elements.  

 

Create a cluster indicator for the application by right clicking on the connector and choosing 

create indicator.  You can also create a control or indicator on the front panel by adding a 

cluster shell to the front panel, as shown in the following front panel, and dragging a data object 

or element, which can be a numeric, Boolean, string, path, refnum, array, or cluster control or 

indicator, into the cluster shell. 

Experiment 4-6 LabVIEW State Machine Architecture 
to Drive from Start to Goal with the Steering Frame 
 

The previous VI for traveling from Point A to B, used a sequence of 2 subVIs.  If you have a 

large numbef of tasks to sequence, or if the sequence changes conditionally, the state machine 

architecture can be combined with modular programming.  The state machine is simple but 

powerful.  It makes code readable, maintainable, and scalable.  It is simply created from a loop, 

a Case structure, an enumerated constant, and Shift Registers.   

 

To create a state machine, add a loop to the block diagram and place a Case structure inside 

the loop.  Then create an enumerated control on the front panel as explained previously with the 



names of the states as the items.  In this application, there are only two states: rotate and drive.  

Right click the control on the front panel or the icon on the block diagram and choose Make 

Type Def as shown in Figure 0-35, so if you change the control, all of the constants on the block 

diagram will automatically update.  Type Def means Type Defined Control.  This is a great time 

saver if you have a state machine with hundreds of constants.   

 

 
 

Figure 0-35. Change the control to a type defined control 

 

Figure 0-26 shows a constant, not a control, wired to a shift register.  Right click the enum 

control and choose Create >> Constant.  Wire the constant through a tunnel to the Selector 

terminal of the Case Structure.  Right click the tunnel and choose Replace with Shift Register 

and wire as shown in Figure 0-26.  The Case Labels change from True and False to Rotate and 

Drive.  In the rotate state, the code should command DaNI 2.0 to turn so it is oriented toward the 

goal.  The Drive state should execute after the Rotate state.  So, at the end of each iteration, the 

code checks if DaNI 2.0 has rotated far enough.  If not, it runs the rotate code again to rotate a 

little farther.  If it has reached the target, it passes execution to the Drive state with the state 

transition code shown in Figure 0-36.  If the comparison between the measured angle and the 

target is True, Drive is written to the shift register.  If it is False, Rotate is written to the shift 

register.  At the next iteration of the loop, the value in the shift register is read and sent to the 

Case Structure Selector Terminal as shown. 

 

   
 

Figure 0-36. State transition code 

Drive or Rotate read from 

the shift register on the left 

side of the loop in iteration 

i + 1.  The value is wired 

to the Case structure 

selector terminal. 

Drive or 

Rotate written 

to shift register 
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side of the 

loop in 

iteration i. 



 

In the Drive State, the True value from the comparison terminates the program if driving to only 

one point, but you can envision further iterations of the states to drive a series of points. 

 

In addition to the Shift Register for the state transition, there are other Shift Registers to share 

data between states and accumulate drive and angle data for both motors.  You can reduce the 

number of wires crossing the code and the number of Shift Registers by grouping data into 

arrays or clusters. 

 

The remaining code in the VI is copied from previous programs, specifically the subVIs in the 

Rotate and Drive VI.  Complete the code in the state machine, save the project, save the VI, 

and test it. 

 

Instead of the subVI code in the two states, modify the subVIs and place them in the states to 

integrate modular programming with the state machine architecture. 

 

What is the effect of changing the wait constant to 20 ms?  If the forward and angular velocities 

are increased, how would it affect the value of the wait constant? 



 

 

 

 

 

 

 

 

 

 

 

 

 



Experiment 5 – Perception with PING))) 

Instructor’s Notes 

 

This experiment requires that the previous experiment be completed.  Similar experimental area 

and tools used in the previous experiment are used here. 

Goal 

Discover how to extract simple features like lines from ultrasonic data. 

 

Required Components 
  

Similar experimental area to that used in previous experiments. 

 

Linear distance measuring tool like a ruler, meter stick, or tape measure. 

  

Angle measuring tool like a protractor. 

  

Background 

 

Students should study Siegwart et al (2011) chapter 4.  This experiment requires that the 

previous experiments have been completed. 

 

Experiment 5-1 Calibrating PING)))’s Orientation and 

File IO 

 

Perception means perceiving or ―seeing‖ things in the environment where DaNI operates.  

Previous experiments revealed that PING))) can see some of the obstacles in the environment 

but there are many things it can’t perceive.  PING))) locates obstacles relative to DaNI’s 

orientation and position in the local coordinate frame.  In order to accomplish this you wrote a VI 

to control the servo relative to DaNI’s orientation.  Recall experiment 2 where you characterized 

PING))) and experiment 3 where you discovered how to control the servo, and especially the 

Pan and Avoid Collision VI in Figure 0-28.   

 



It is possible to write the offset of PING)))’s orientation to a file so that each time you start an 

experiment, PING))) is oriented forward. Create the VI in Figure 0-1.  This VI displays the 

current offset before the loop executes.  The user can adjust the servo angle until PING))) is 

oriented so it points forward in the loop.  After the user is satisfied with the orientation, the user 

can write the value to a file on the SbRIO by change the value of the Write? Boolean control to 

True and then pressing the Continue button to terminate the loop.  When the loop terminates, 

the new offset angle value is passed out of a loop tunnel to a tunnel in a Case structure.  The 

Write? value is passed through a loop tunnel to the Case structure selector terminal.  If the 

value is True, the Write Sensor Servo Offset VI with a True constant input executes.  If the value 

of Write? is False, no code is executed in the False Case.  

 

 
 

 

    
 

Figure 0-1. Calibrate and Save Servo Offset Angle VI 

 

The Write Sensor Servo Offset VI writes the new offset angle to a file by calling the Save Offset 

Angle to File SubVI whose block diagram is shown in Figure 0-2.  As shown by the three 

functions in sequence, it opens a file, writes to it, and closes the file.  These functions are in the 

Functions>>Programming>>File I/O palette.  The Open/Create/Replace function opens an 

existing file, creates a new file, or replaces an existing file, programmatically or interactively 

using a file dialog box. You can specify the operation to perform by choosing one of the items in 

the enum constant input to the function: 

 

 open (default)—Opens an existing file.  

 replace—Replaces an existing file.  

 create—Creates a new file.  

 open or create—Opens an existing file or creates a new file if one does not exist.  

 replace or create—Creates a new file or replaces a file if it exists.  



 replace or create with confirmation—Creates a new file or replaces a file if it exists and 

the user gives permission.  

  

The input is set to create or replace In this instance.  There is a second input allowing you to 

select read/write (the default), read-only, or write-only that is not used in this instance since the 

default is appropriate.  

 

The next function in the sequence, Write to Binary File is used to save space on the sbRIO.  

There are several file types available in LabVIEW, and two of the most common are binary and 

text files.  Use text (or ASCII) files if you want to make your data available to other applications, 

such as Microsoft Excel, because they are the most common and the most portable.   

Use binary files if you need to perform random access file reads or writes or if speed and 

compact disk space are crucial, because they are more efficient than text files in disk space and 

in speed.  You will use text files later in this experiment to write data to the host hard drive. 

 

The last function in the sequence, Close File, destroys the reference, frees space on the sbRIO 

for other uses, and prevents memory leaks. 

 

 
 

Figure 0-2. Save Offset Angle to File SubVI block diagram 

 

The Get Angle Offset File Path, whose block diagram is shown in Figure 0-3, provides the file 

path input information for the Open/Create/Replace File function.  It is generic for a variety of 

robots.  It uses the Conditional Disable Structure to select between an RT target that contains a 

hard drive with C:\ designation and a user defined target.  The RT target is appropriate for this 

instance.  The structure contains a path data type constant with value of C:\.  The Conditional 

Disable Structure is similar to a Case Structure, except you use it to disable specific sections of 

code on the block diagram based on some user-defined condition. The output is a portion of the 

file path.  More information is available in LabVIEW Help.  In this instance it is concatenated 

with SensorMotorOffset_%d.dat and the servoID whose representation is changed from a 32-bit 

signed integer to a string with the Format Into String function.  The servo ID is necessary in 

general because the subVI could be used in an application where the robot had multiple servo 

motors. 

 



 
 

Figure 0-3. Get Angle Offset File Path subVI 

 

When the Initialize Starter Kit 2.0 VI executes, it calls a series of subVIs in a heirarchy as shown 

in the annotated VI Hierarchy window (Tools>>VI Hierarchy).  One of the subVIs, The Get Angle 

Offset File Path inputs the path to another subVI, the Load Offset Angle from File, which places 

the offset value in memory, so whenever you execute a VI that contains the Initialize VI, the last 

offset value saved to the file is automatically used to point the servo and PING))). 

 

 
 

Figure 0-4. Load servo offset information path in the VI Hierarchy window 

 

Get Angle Offset File Path VI 

Load Offset Angle From File VI 

Initialize Starter Kit 2.0 

VI 



You can use ftp to locate the sensor motor offset and other files on the sbrio.  Open Windows 

Explorer.  Enter ftp://<IP address>/ as shown in Figure 0-5.  Since the file is binary you can’t 

view the contents without writing a translator in LabVIEW. 

 

 
 

Figure 0-5. Displaying files on the sbRIO with Windows Explorer 

 

After the user adjusts the offset to the desired position, they press the Write? Boolean control.  

Unless you modify its mechanical action to switch when released, it will change back to False 

before the user can click the Continue button.   

 

LabVIEW Boolean controls may behave in one of six different ways or mechanical actions.  You 

can change the action by right clicking the control, selecting Mechanical Action, and selecting 

an action from the window as shown in Figure 0-6.  There are two basic mechanical actions:  

switch and latch.   

 

 Switch will return to its default state when the user clicks it. You might think of this as a 

traditional light switch.  

 

 Latch will return to its default state when the user clicks it or when its value has been 

read by LabVIEW.  You might think or this as a push button that pops back up 

automatically.   

 

Each Boolean control can be configured to change state when pressed, when released, or until 

released.   

 

 When-pressed changes state on a click and remains there until another click.   

 

 Shen-released changes state on a click release and remains there until another until 

another click release (switch or latch) or when read by LabVIEW (latch).   

 

 Until-released changes state on a click that is held down and changes when the click is 

released (switch or latch) or when read by LabVIEW (latch). 

 

 



 
 

Figure 0-6. Change the mechanical action of the Boolean Write? control 

 

The switch mechanical action requires that you click it again to change it back to the default 

value of False.  So you don’t have to remember to do that every time you run the VI, you can 

add some code to automatically reset it to False.  This code is shown in the flat sequence 

structure where a False Boolean constant is wired to a local variable. 

 

When you run a VI all of the front panel object properties are stored in memory.  The local 

variable gives the code access to read from or write to the Write? Boolean control value.  With a 

local variable, you can write to or read from a control or indicator on the front panel. Writing to a 

local variable is similar to passing data to any other terminal. However, with a local variable you 

can write to it even if it is a control or read from it even if it is an indicator. In effect, with a local 

variable, you can access a front panel object as both an input and an output. 

 

Right-click the front panel object or the block diagram terminal and select Create»Local Variable 

from the shortcut menu to create a local variable that you can add to the block diagram. Notice 

that the icon inherits the label of the control.  You can right click the local variable icon and 

change it to read from or write to.  In this instance choose write to.  Right click the input 

connection and choose create>>constant to create a Boolean False constant.  This will 

automatically set the value of the front panel control back to False. 

 

Be careful when using local variables.  People with text programming experience who are 

beginning to learn LabVIEW tend to over use them.  They are inherently not part of the 

LabVIEW dataflow execution model. Block diagrams can become difficult to read when you use 

local variables. Overusing local variables, such as using them to avoid long wires across the 

block diagram or using them instead of data flow, slows performance.  

 

Since using a local variable gives you access to memory, you should initialize it.  To initialize a 

local or global variable, verify that the variable contains known data values before the VI runs. 

Otherwise, the variables might contain data that causes the VI to behave incorrectly. If the 



variable relies on a computation result for the initial value, make sure LabVIEW writes the value 

to the variable before it attempts to access the variable for any other action.  If you do not 

initialize the variable before the VI reads the variable for the first time, the variable contains the 

default value of the associated front panel object.  

 

A race condition can occur when two or more pieces of code execute in parallel and have 

access to a shared piece of memory like a local variable. If each piece of code is independent, 

there is no way to distinguish the order LabVIEW uses to access the shared resource.  Race 

conditions can be dangerous because they can appear and disappear when the timing of a 

program changes.  Although race conditions can exist any time more than one action updates 

the value of the same stored data, race conditions often occur with the use of local variables or 

an external file.  

 

Figure 0-7 shows a race condition.  Remember that the data flow paradigm in LabVIEW 

depends on wires, but there are no wires connecting the upper and lower operations.  The 

output of this VI, the value of local variable x, depends on which operation runs first. 3 + 4 might 

run first, or 1 = 2 might run first since there are no wires connecting them.  Because each 

operation writes a different value to x, there is no way to determine whether the outcome will be 

7 or 3. This is known as a race condition.  The VI might return 3 most of the time, but every now 

and then, it might return 7. 

 

 
 

Figure 0-7. Race condition 

 

Local variables make copies of data buffers. When you read from a local variable, you create a 

new buffer for the data from its associated control. If you use local variables to transfer large 

amounts of data from one place on the block diagram to another, you generally use more 

memory and, consequently, have slower execution speed than if you transfer data using a wire. 

If you need to store data during execution, consider using a shift register.  

 

After completing the code for the servo calibration VI, save it and save the project.  Run the VI.  

Point PING))) precisely in the forward direction and write the offset to file.  Test the result by 

opening another VI that calls the initialize VI, like the Steering Frame Drive State Machine VI.  

Use ftp to view the date and time the servo offset file was written to the sbRIO. 

 



Experiment 5-2 Displaying Perception Data with an XY 

Graph 

 

Use information from the VIs developed previously and additional information in the following to 

build the VI shown in Figure 0-8 that will acquire and display range data to obstacles using polar 

coordinates at 1 sample intervals while DaNI remains stationary and PING))) pans from -65 to 

65. 

 

 

 
 

 

Figure 0-8. Acquire and Display Range Data VI 

 

Code the lower sequence that controls the servo angle and reads the range data by copying 

code from previous VIs like the Pan and Avoid Collision VI shown in Figure 0-28.  You would 

like to display the data in polar coordinates (servo angle, , on the x axis versus distance, , on 

the y axis) on the front panel, but the chart and graph previously used are for time dependent 

data.  You can use an XY Graph.  The following lists the variety of charts and graphs in 

LabVIEW: 

 

 Waveform Graphs and Charts—Display data typically acquired at a constant rate.  

 XY Graphs—Display data acquired at a non-constant rate and data for multivalued 

functions.  



 Intensity Graphs and Charts—Display 3D data on a 2D plot by using color to display the 

values of the third dimension.  

 Digital Waveform Graphs—Display data as pulses or groups of digital lines.  

 Mixed Signal Graphs—Display data types accepted by waveform graphs, XY graphs, 

and digital waveform graphs. Also accept clusters that contain any combination of those 

data types.  

 2D Graphs—Display 2D data on a 2D front panel plot.  

 3D Graphs—Display 3D data on a 3D front panel plot. 

 

The XY graph is a general-purpose, Cartesian graph that plots data with a varying time base. 

The XY graph displays any set of points, evenly sampled or not.  The XY graph can display 

plots containing any number of points in several data types.  In this instance, you have a single 

plot. The XY graph accepts a cluster that contains an x array and a y array for single-plot XY 

graphs.  So, your code needs to create two arrays, one of angle values for the x coordinates 

and one of distance values for the y coordinates.   

 

The best programming practice when creating arrays is to use the initialize array function.  

Initializing will reserve memory prior to loop execution and won’t require the operating system to 

reallocate memory while the loop is executing.  Place two Initialize Array functions on the block 

diagram as shown in Figure 0-8.  Configure them for single dimension arrays of 130 elements 

with initial value of 0 as shown.   

 

Place code in the loop that replaces the 0 values with the most recent acquired data using two 

Replace Array Subset functions as shown.  Wire the initialized arrays to shift registers and wire 

from the shift registers to the Replace Array Subset functions.  Wire the output of the While loop 

Iteration terminal to the index connections to increment the location or index in the array as the 

loop iterates.  When i = 0, the first 0 value will be replaced.  When i = 1, the second will be 

replaced, etc.  Wire the values of the angle and range acquired in the current iteration into the 

new element connections as shown.  To display the values on the front panel, combine the 1D 

arrays into a 2D array on the output of the loop with a Build Array function configured without 

concatenation as shown and create an indicator.  

 

Since you initialized the arrays to 130 elements, and the VI might terminate with less than 130 

elements, it is possible that the graph would display several elements with the initialized value of 

0.  To avoid this, add two Array Subset functions on the block diagram.  Configure the functions 

to output a subset of the array starting at element 0 and extending to length i + 1 as shown in 

Figure 0-8. 

 

Add an XY Graph to the front panel.  Add a bundle function (cluster palette) to the block 

diagram.  Wire the output of the two arrays to the bundle function and wire the cluster output 

from the bundle function to the XY graph.  Configure the graph as shown on the front panel. 

 

Add termination code that will automatically terminate after panning from -65 to 65 or if the 

user presses the stop button. 



 

Save the VI and the project and test it.  Place an object like a box in front of DaNI and display 

the data acquired similar to that shown on the front panel of Figure 0-8. 

 

Experiment 5-3 Communicating Perception Data to the 
Host with Network Streams 
 

Even though you can do a lot of analysis on the sbRIO, you may want to transfer the data to the 

host computer so you can do additional analysis there.  The current VI runs on the sbRIO and 

displays information on the host monitor with front panel communication.  With this technology, 

the host computer and the RT target execute different parts of the same VI. On the host 

computer, LabVIEW displays the front panel of the VI while the RT target executes the block 

diagram.  

 

Front panel communication is a good communication method to use during development, 

because you can quickly monitor and interface with Vis running on an RT target. With network 

communication, a host VI runs on the host computer and communicates with the VI running on 

the RT target using specific network communication methods such as network-published shared 

variables, Network Stream functions, or other protocols like TCP. You might use network 

communication for the following reasons: 

 

• To run another VI on the host computer. 

• To control the data exchanged between the host computer and the RT target. You can 

customize the communication code to specify which front panel objects to update and when. 

You also can control which components are visible on the front panel because some controls 

and indicators might be more important than others. 

• To control timing and sequencing of the data transfer. 

• To perform additional data processing or logging. 

 

Use the Network Streams functions for network communication when you need to transfer every 

point of data. Use cases include: 

 

• Transferring data losslessly between RT target and host computer 

• Transferring data from an RT target to host computer for logging data to file 

• Transferring data from an RT target to host computer for data processing and analysis that 

requires more memory than the RT target has available  

 

Stream data continuously between two LabVIEW applications with network streams. A network 

stream is a lossless, unidirectional, one-to-one communication channel that consists of a writer 

and a reader endpoint. You can use network streams to stream any data type between two 

applications, but the following data types stream at the fastest rates: 

 



• Numeric scalars 

• Booleans 

• 1D arrays of numeric scalars 

• 1D arrays of Booleans 

 

You can accomplish bidirectional communication by using two streams, where each computer 

contains a reader and a writer that is paired to a writer and reader on the opposite computer.  

Each endpoint uses a FIFO buffer to transfer data.  A buffer is a region of memory that stores 

data.  FIFO means first in and first out.  With a FIFO buffer, the writer adds data to the buffer in 

a sequence, and the reader removes it in the same sequence.  The writer and reader can 

operate at different rates and no data will be lost if the buffer size is large enough and the 

applications are thoroughly tested.  Network streams creates a buffer on the writer and another 

one on the reader.  As shown in Figure 0-9, data flows in the following order: 

 

1. The writer endpoint writes data to a FIFO buffer, on the sbRIO in this instance. 

2. The Network streams software (called the Network Streams Engine or NSE) transfers data 

over a network (via the ethernet cable in this instance) to another FIFO buffer on the reader 

endpoint, the host computer in this instance. 

3. The reader endpoint reads the data from that FIFO buffer. 

 

 
 

Figure 0-9. Network streams concept diagram 

 

Complete the following steps to create and stream data with a network stream: 

 

1.       Create the endpoints and establish the stream connection. 

2.       Read or write data. 

3.       Destroy the endpoints. 

 

Use information from the VIs developed previously and additional information in the following to 

modify the Acquire and Display Range Data VI to build the Acquire Display & Write Range Data 

VI shown in Figure 0-10 and the Read Display & Save Range Data VI shown in Figure 0-11.  

The Read Display & Save Range Data VI should reside under My Computer in the project as 

shown in Figure 0-12 and not under the sbRIO target. 

 



 
 

Figure 0-10. Acquire Display & Write Range Data VI on the real-time sbRIO 

 

 
 

 
 

Figure 0-11. Read & Save Range Data on the Windows host computer 

 

 
 

Figure 0-12. Project showing Read Display & Save Range Data under the host computer 



 

LabVIEW identifies each stream endpoint with a URL (uniform resource locator). To connect 

two endpoints and create a valid network stream, you must specify the URL of a remote 

endpoint with the Create Network Stream Endpoint Reader or Create Network Stream Endpoint 

Writer function. The URL of a stream endpoint must contain at least 

 

//host_name/endpoint_name  

 

where: 

 

 host_name is the project alias, DNS name, or IP address of the computer on which the 

endpoint resides.  In addition, the string ―localhost‖ can be used as a pseudonym for the 

computer on which the code is currently executing.  If host_name is left blank, localhost 

is inferred.   

 

 endpoint_name is the actual name of the stream endpoint.   

 

More detailed information on endpoint URLs can be found in the LabVIEW Help under the topic 

Specifying Network Stream Endpoint URLs.   

 

A network stream is the connection between a writer and reader endpoint.  Create the endpoint 

using the Create Network Stream Writer Endpoint and Create Network Stream Reader Endpoint 

functions.  The endpoint name is supplied through the writer name or reader name input to the 

create function.  LabVIEW uses this name to generate a URL for identifying the endpoint 

resource and must be unique.  In addition to creating the endpoint resources, the create 

function also links the writer and reader endpoints together to form a fully functioning stream.  

The endpoint that is created first will wait until the other endpoint has been created and is ready 

to connect, at which point both create functions will exit. The stream is then ready to transfer 

data.  Used in this manner, the create function effectively acts as a network rendezvous where 

neither create function will progress until both sides of the stream are ready or until the create 

call times out. 

 

In order to establish a stream between the two endpoints, three conditions must be satisfied: 

 

1. Both endpoints must exist.  In addition, if both create functions specify the remote 

endpoint URL they are linking against, both URLs must match the endpoints being 

linked. 

 

2. The data type of the two endpoints must match.  

 

 

3. One of the endpoints must be a write only endpoint, and the other endpoint must be a 

read only endpoint. 

 



 

If condition one isn’t initially satisfied upon executing the create function, it will wait until the 

timeout expires, and then return a timeout error if the condition still hasn’t been satisfied.  The 

VIs in Figure 0-10 and Figure 0-11 use the default timeout of -1 meaning no time limit.  If both 

endpoints specify the other endpoint to link against and only one of the URLs match, one create 

function will return an error, and the other will continue to wait until the timeout expires.  At least 

one of the create endpoint functions needs to specify the URL of the other endpoint in either the 

reader url or writer url input.  Failure to do so will guarantee that both create calls will eventually 

return a timeout error.  The reader and writer endpoints can both specify each other’s URLs in 

their create function, but only one is necessary.   

 

Stream endpoints use a FIFO buffer to transfer data from one endpoint to the other.  The buffer 

size is specified at the time of creation, and the buffer is allocated as part of the create call.  The 

size of the buffer is specified in units of elements, where an element in the buffer represents a 

single value of the type specified by the data type of the stream.  The maximum number of 

elements that can be read or written in a single call is limited by the endpoint buffer size.  A 

request to read or write a number of elements that is larger than the endpoint buffer size will 

immediately result in an error.   There is no simple formula for determining the optimal buffer 

size.  You will often have to experiment with different buffer sizes during development to 

determine which settings work best for the needs of your application.  Thoroughly test the 

application to confirm the buffer sizes.  The VIs in Figure 0-10 and Figure 0-11 use the default 

size of 4096. 

 

Network streams offer both single element and multiple element interfaces when reading and 

writing data.  Single element reads and writes allow one element at a time to be added or 

removed from the buffer, while multiple element reads and writes allow data to be added or 

removed in batches.  The VIs in Figure 0-10 and Figure 0-11 use single element interfaces. 

 

Cease communication from either endpoint by calling the Destroy Stream Endpoint function.  To 

ensure that all data written to the stream has been received by the reader before destroying the 

writer endpoint, first call the Flush Stream function and wait for the appropriate wait condition to 

be satisfied before destroying the writer endpoint.  Only writer endpoints may call the flush 

function.  The flush function first requests that any data still residing in the writer endpoint buffer 

be immediately transferred across the network. It then waits until either the specified wait 

condition has been met or the timeout expires.  The Flush Stream function has two different wait 

conditions: 

 

 All Elements Read from Stream 

 All Elements Available for Reading 

 

When you specify ―All Elements Read from Stream,‖ the flush function will wait until all data has 

been transferred to the reader endpoint and all data has been read from the reader endpoint 

before returning.  The ―All Elements Available for Reading‖ option will wait until all data has 

been transferred to the reader endpoint, but it will not wait until all data has been read from the 



reader endpoint.  Failure to call flush before destroying the writer endpoint means any data in 

transit or any data still residing in the writer endpoint buffer could be lost.  The VIs in Figure 0-10 

and Figure 0-11 use the default ―All Elements Read from Stream‖. 

 

The Read Display & Save VI uses the Format Into String function to convert the data from DBL 

to string.  It converts an array of any dimension to a table in string form, containing tabs 

separating column elements, a platform-dependent EOL (end of line) character separating rows, 

and, for arrays of three or more dimensions, headers separating pages.  It requires a format 

string input.  There are a large number of formats available that are explained in LabVIEW Help 

in the Format String Syntax topic.  In this instance the simple %f for floating point is appropriate.   

 

You have used error wires in the RT VIs created in previous experiments for the sbRIO without 

an explanation of error handling in LabVIEW.  Additional error handling code was added to the 

Read & Save VI since it runs in the MS Windows OS on the host computer.  From the previous 

discussion, you noticed that errors are generated when using Network Streams.  Errors are also 

generated when handling files and in other I/O operations like serial, instrumentation, and data 

acquisition.  Error checking tells you why and where errors occur. Without it, you know only that 

the VI does not work properly.  

 

The error in and error out information are cluster data types that include the following 

components:  

 

 Status is a Boolean value that reports TRUE if an error occurred.  

 

 Code is a 32-bit signed integer that identifies the error numerically. A nonzero error code 

coupled with a status of FALSE signals a warning rather than a error.  

 

 Source is a string that identifies where the error occurred.  

 

By default, LabVIEW automatically handles any error when a VI runs by suspending execution, 

highlighting the subVI or function where the error occurred, and displaying an error dialog box. 

To disable automatic error handling for a subVI or function within a VI, wire its error out 

parameter to the error in parameter of another subVI or function or to an error out indicator.  

Note that the error out and error in parameters have been wired in previous VIs and in Figure 

0-11. 

 

Error handling in LabVIEW follows the dataflow model. Just as data values flow through a VI, so 

can error information. Wire the error information from the beginning of the VI to the end. Include 

an error handler VI at the end of the VI to determine if the VI ran without errors. The block 

diagram shown in Figure 0-11 uses the Simple Error Handler.  Use the error in and error out 

clusters in each VI you use or build to pass the error information through the VI. The error 

clusters are flow-through parameters. 

 



As the VI runs, LabVIEW tests for errors at each execution node. If LabVIEW does not find any 

errors, the node executes normally. If LabVIEW detects an error, the node passes the error to 

the next node without executing that part of the code. The next node does the same thing, and 

so on. At the end of the execution flow, LabVIEW reports the error.  

 

You can choose other error handling methods. For example, if an I/O VI on the block diagram 

times out, you might not want the entire application to stop and display an error dialog box. You 

also might want the VI to retry for a certain period of time. In LabVIEW, you can make these 

error handling decisions on the block diagram of the VI. 

 

Some VIs, functions, and structures that accept Boolean data also recognize an error cluster. 

For example, you can wire an error cluster to a Boolean function or to the Boolean inputs of the 

Select or Stop functions to handle errors using logical operations.  You can wire an error cluster 

to the conditional terminal of a While Loop to stop the iteration of the loop. If you wire the error 

cluster to the conditional terminal, only the TRUE or FALSE value of the status parameter of the 

error cluster passes to the terminal. If an error occurs, the loop stops.  When you wire an error 

cluster to the selector terminal of a Case structure, the case selector label displays two cases— 

Error and No Error—and the border of the Case structure changes color—red for Error and 

green for No Error. If an error occurs, the Case structure executes the Error subdiagram.  

 

Complete the modifications to the Acquire Display & Write VI and complete the Read & Save VI.  

Save the VIs and save the project.  Test the VIs by running both simultaneously.  An error 

dialog might appear when the Acquire Display & Write VI terminates and destroys the stream.  

Just click continue and the Read & Save VI will terminate.  The file created by the Read & Save 

VI should be similar to Figure 0-13.  Graph the data in a program like MS Excel as shown in 

Figure 0-14 and compare it with the physical objects in front of DaNI.  You can run the Acquire 

and Display Range Data VI created previously that uses front panel communication in the same 

obstacle environment and compare the XY graph with the MS Excel graph. 

 



-65 0.751059

-64 0.76325

-63 1.710917

-62 1.718815

-61 1.718815

-60 1.718815

-59 1.711947

-58 1.711088

-57 1.712118

-56 1.712118

-55 1.693402

-54 1.693402

-53 1.697695

-52 1.69323

-51 1.697695

-50 1.689453

-49 1.693917

-48 1.693402

-47 1.693574

-46 1.702159

-45 1.697695

-44 1.697695

-43 1.699927

-42 1.701816

-41 1.702331

-40 1.701816

-39 1.701816

-38 1.712118

-37 1.711088

-36 1.712118

-35 1.712118

-34 1.711947

-33 1.711947

-32 1.712118

-31 0.776815

-30 0.772522  
 

Figure 0-13. Sample Data from the Range Data.xls file 
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Figure 0-14. MS Excel graph of range data file 

 

Experiment 5-4 Feature Extraction - Identify Edges of 

an Obstacle 

Refer to Siegwart et al (2011) chapter 4.7 and consider how to write a program that would 

automatically identify the obstacles in the range data set from the previous experiment.  Since 

the range data is from panning in the xy plane, the only feature that can be extracted from the 

data are straight or curved lines.   

 

The data points are the shortest distance to any obstacle in PING)))’s FOV so there is some 

error associated with each data point.  If you recall from the specifications on the Parallel web 

site, the field of view varies with distance from the transducer as shown in Figure 0-15.  At 1m, 

the FOV is about +/- 10, and the error is about 1m*sin 10 = 0.17 m.  

 

 
 

Figure 0-15. PING))) FOV versus distance 



 

To write a program that will automatically identify the lines in the data from one scan of -65 to 

65, you might begin with pseudo code that lists the steps the program must execute.  The basic 

process is to identify the beginning and end points of a line starting at the beginning of the data 

set.  Assuming straight, linear, features, one algorithm used by Siegwart et al (2011) is the split 

and merge algorithm based on least squares fit.  The pseudo code is:    

 

Simplify the data by replacing the angle values with 0 – 130. 

 

Calculate the line for the first two points: 

 

0 0.751059 

1 0.76325 

 

Evaluate the line for these points. The equation for the line between these two points is: y = 

0.0122x + 0.7511 in the form y = mx + b  where b is the offset and m is the slope (0.76325 – 

0.751059). 

 

Write the first point to a file or array of end points. 

 

Iterate through a test to determine the end of the line. 

 

Calculate the next y coordinate at (x = 2) with the above equation.  The result is y2 = 

0.77544. 

 

Define a threshold for comparison of the difference between the predicted and actual 

values.  For example, use 0.05 for the threshold. 

 

If the difference is less than the threshold, the line continues.  If not, you have found an 

end point and you start a new line. 

 

The next point is:  

 

2 1.710917 

 

The difference is 0.935 which exceeds the threshold so write the previous point as the 

end of the line and start a new line with the previous point. 

 

Repeat the process until all of the range data has been processed.   

 

Create a VI that will read the data and identify all of the line features by writing their start and 

end points to a file. 

 



Experiment 5-5 Obstacle Avoidance 
 

Write a VI that will: 

 

Create a file of endpoints (you can use the one from the previous section) 

Read the line end points,  

Determine  

the closest end point,  

the direction of the line,  

which way to rotate to avoid the feature,   

how much to rotate to avoid the feature (considering the 0.17 m error described 

previously),  

how far to drive 

and drive DaNI past the feature. 

 

Test the VI in a simple environment with one obstacle in front of DaNI at the start. 

Experiment 5-6 Follow a Wall 
 

Modify the VI from the previous experiment to follow the line closest to the robot which you will 

assume to be a wall.  You only need to drive a very short distance parallel to the line.  Set a 

save operating distance from the ―wall.‖  Start with DaNI facing the wall.  Drive to the safe 

distance.  Turn to an orientation parallel to the wall. Drive a short distance and stop.  

Experiment 5-7 Gap feature extraction in the Roaming 
VI 
 

Figure 0-16 shows the subVIs in the Roaming VI studied in previous experiments.  The following 

will explain the remaining VIs that control panning, build a data structure of range data, analyze 

the data to extract gap features, rate the features to determine the largest gap, and calculate the 

driving direction to the largest gap. 



 
 

Figure 0-16. Path to calculate the driving direction in the Roaming VI 

 

The Calculate Driving Direction VI accepts two arrays of distances and angles from the 

obstacles data structure as shown in Figure 0-17, and using a hierarchy of subVIs, determines 

the gaps, scores the gaps,  calculates the direction the largest gap, and outputs the steering 

frame velocity. 

 

 
 

Figure 0-17. Calculate Driving Direction VI input and output connections 

 

 

 
 

Figure 0-18. Calculate Driving Direction block diagram 

 

Used in previous experiments 

To be studied in this experiment 



The Calculate Driving Direction VI calls the Simple Vector Field Histogram (VFH) VI 

(Functions>>Robotics>>Obstacle Avoidance palette) whose connections are shown in Figure 

0-19 that identifies obstacles and gaps, or open areas, in the robot environment.  You can use 

the gap information in a variety of robots, not just DaNI 2.0, to implement reactionary motion. 

The VFH VI outputs the largest gap data, which is a cluster of two values, the location of the 

largets gap and the size of the gap. Largest gap describes the largest open area in the robot 

environment.  Angle to gap contains the direction of the open area with respect to the robot 

sensor.  Size of gap contains the angular size, or visual diameter, of the open area, measured 

as an angle.   

 

 

 

 
 

Figure 0-19. Simple Vector Histogram VI input and output connections 

 

The VFH VI also determines if there is an obstacle within the panid range.  Panic range is an 

area of the environment to avoid, i.e. the obstacle is too close to continue driving forward and 

avoiding.  The Roaming VI code commands DaNI to back away If there are obstacles in the 

panic range.  The panic range data structure is a cluster of two elements.  The panic threshold 

distance specifies the maximum distance at which obstacle within panic range is TRUE.  Panic 

threshold angle specifies the maximum angle at which obstacle within panic range is TRUE.  

Obstacle within panic range is TRUE if an object within panic threshold angle is nearer to the 

sensor than the panic threshold distance.   

  

Distances and direction angles inputs are obtained from the scanned obstacles data structure.  

Distances is an array of range data to obstacles.  Direction angles is an array of angles with 

respect to the center of the sensor corresponding to each of the distances. Positive values of 

angles represent locations to the right of the center of the sensor, and negative values represent 

positions to the left of the center of the sensor.  

 

The Distance threshold input defines obstacles. This VI ignores any objects at distances greater 

than distance threshold.   

 

The nearest obstacle output is a data structure composed of a cluster of two elements.  Angle to 

obstacle contains the direction of the nearest obstacle with respect to the sensor.  Distance to 

obstacle contains the distance between the sensor and the nearest obstacle.   

  

The VFH outputs data to a multiplot XY graph in the Histogram data structure.  One plot is the 

location of the largest gap and the other is the distances to and locations of obstacles. 



 

The VFH block diagram is shown in Figure 0-20.  Panic range distance and angle values of 0.15 

m and 45 and the distance threshold value of 0.8 m are provided via constants in the Calculate 

Driving Direction caller shown in Figure 0-18. 

 

 
 

 

 

 

Figure 0-20. VFH block diagram 

 

Figure 0-21 shows the segment of code that evaluates the panic condition.  The panic range 

cluster is unbundled with an Unbundle By Name function into the panic threshold distance and 

panic threshold angle DBL scalars.  Many LabVIEW functions are polymorphic so you can wire 

different data types to them.  Some Comparison functions have two modes for comparing arrays 

or clusters of data. In Compare Aggregates mode, if you compare two arrays or clusters, the 

function returns a single Boolean value. In Compare Elements mode, the function compares the 

elements individually and returns an array or cluster of Boolean values, the mode used in this 

instance.  In the False case of the Case structure, the upper Less? Function has one input that 

is the 1D array of distances.  This is the thick array wire going to the upper connection on the 

function.  The other input is the panic threshold distance DBL scalar, a thin scalar wire on the 

lower connection.  In this configuration, the function compares all of the array values to the 

distance value and returns an array of Booleans.  Note the thick output wire.   

 

 

 

Evaluate panic condition 

Extract gap features Build Output Information 



  
 

Figure 0-21. Panic code segment of the VHF block diagram 

 

The direction angles array in Figure 0-21 is input to an Absolute Value function where all of the 

negative element element values in the array are changed to positive.  The lower Less? 

Function makes a similar comparison between the absolute value of the distance angle array 

values and the panic threshold angle.  The Boolean arrays from the two Less? functions are 

wired to a logical AND function.  If both inputs of a logical AND are TRUE, the function returns 

TRUE. Otherwise, it returns FALSE.  The output is wired to an OR Array Elements Function that 

returns a single value of FALSE if all the elements in Boolean array are FALSE or if Boolean 

array is empty. Otherwise, the function returns TRUE.  If TRUE is output, the caller drives DaNI 

away from the nearest obstacle, if it returns FALSE, it drives DaNI toward the largest gap.  If 

either the threshold distance or angle is 0, the True case executes which creates a FALSE 

output using a default-if- unwired tunnel. 

 

Figure 0-22 shows the segment of code that extracts gap features.  It uses a For loop to 

automatically extract each element of the distances array.  The For loop border is shaped 

differently from the While loop used in previous VIs so you can easily distinguish between them.  

A For loop has a loop iteration terminal like a While loop, but it doesn’t have a conditional 

terminal in its default configuration.  Instead, it has a count terminal.  The count terminal is an 

input terminal whose value indicates how many times to repeat the subdiagram.  When the loop 

had finished iteration count times, it terminates automatically without the need for a Stop button 

or other input.  Normally the count terminal is wired, but not in this instance.  In this instance, the 

distances array passes through an input tunnel on the left side of the loop.  This causes the 

count to inherit the number of elements in the array. In addition, the auto-indexing property of 

the input tunnel, disassembles the array and passes the elements into the loop one at a time, 

starting with the first element whose index is 0.  Remember that the loop iteration value is also 0 

on the first interation.  You can disable auto indexing by right clicking the tunnel and choosing 

Disable Auto Indexing.  In this instance, auto indexing is enabled on the array input (the diagram 

shows the thick array wire outside the tunnel and the thin scalar wire inside the loop), and 

disabled on the threshold input.  Note the difference in the tunnels.  The enabled tunnel has a 

white background with two brackets: [ ].  The disabled tunnel is filled with the data type color. 

 

Array 

Scalar 



  
 

      

  
 

Figure 0-22. Gap feature extraction code segment of the VHF block diagram 

 

gap size 

gap size 

Indexing enabled 

Indexing disabled 

T = Gap = 0,  

F = Obstacle = 1 



To determine whether an individual distance value represents a gap or an obstacle, each 

element passed into the loop with auto indexing is compared to the distance threshold with a 

Greater? Function as shown in the upper portion of Figure 0-22.  The Boolean output goes to a 

Select function that outputs 0 if the distance is greater than the threshold and 1 if it isn’t.  An 

output tunnel on the right side of the loop automatically reassembles the array.  The result is 

that the values in the distances array are replaced by 0s and 1s where a gap is 0 and an 

obstacle is 1.  Note that the output tunnel is configured to enable indexing which reassembles 

the array that was disassembled by the input tunnel.  The new array has the same number of 

elements and is reassembled in the same order as the original array was disassembled. So, the 

input tunnel read all of the array values from memory and the output tunnel writes all of the 

array values back to memory.   

 

The nested Case structures in Figure 0-22 call the Simple VFH Evaluate Current Gap VI whose 

block diagram is shown in Figure 0-23.  It determines the beginning and end of gaps and the 

gap size.  The outer Case structure selector input is the output of the gap comparison.  If a gap 

was identified, the True case executes.  The True case contains a nested Case structure whose 

selector input is a comparison with the state of the previous distance stored in a shift register.  If 

the state was False, a new gap has started.  If it is True, the current distance is in the same gap 

as the previous distance.  If a new gap is identified, a value of 1 is written to the Size of Gap 

meaning it is a new gap with size = 1.  If this distance continues the gap, the size is incremented 

by one.  If a new gap is identified, the value of the loop index, I, is written to the offset of best 

gap so far.  Note that the loop index is the same as the array index, so the offset is essentially 

the position of the value in the array. 

 

   
 

Figure 0-23. Simple VFH Evaluate Current Gap VI block diagram 

 

If an obstacle was identified, the False case executes.  The False case contains a nested Case 

structure whose selector input is a comparison with the state of the previous distance stored in a 

shift register.  If the state was True, the obstacle continues.  If it is False, the end of a gap has 

been identified and the gap is compared with other gaps by calculating a score.  If this gaps 

score is the highest so far, its offset and size are ouput.   

 

The evaluation is done by calling the Simple VFH Score VI shown in Figure 0-24.  The score is 

compared with that of the best gap so far.  The Greater? Comparison output is input to a Case 

structure selector.  If the score of the current gap is better than previous gaps, the True case 



executes and the offset, size, and score of the current gap is output.  If the comparison is False, 

the previous values of offset, size, and score of the best gap so far are output. 

 

 
 

Figure 0-24. Simple VFH Score VI block diagram 

 

The Simple VFH Score VI inputs x, mean, and std to the normal probability density function 

code shown in Figure 0-25 that calculates the score.  x specifies the quantile of the continuous 

random variate, X.  Mean specifies the location or mean parameter of the variate.  Std specifies 

the scale or standard deviation parameter of the variate and must be greater than 0.  pdf(x) is 

the probability density function at x.   

 

   
 

Figure 0-25. Normal PDF VI block diagram 

 

Siegwart et al (2011) describes the probability density function in chapter 4.  There is also a 

brief description and example in LabVIEW Help.  Continuous random variables can take on any 

value in an interval of real numbers. For example, an experiment measures the life expectancy 

x of 50 batteries of a certain type. The batteries selected for the experiment come from a larger 

population of the same type of battery.  Figure 0-26 shows the histogram for the observed data. 

 



 
 

Figure 0-26. Probability density function example 

 

The figure shows that most of the values for x are between zero and 100 hours. The values 

drop off smoothly as x increases. The value of x can equal any value between zero and the 

largest observed value, making x a continuous random variable.  You can approximate the 

histogram with an exponentially decaying curve (note the use of the exponential function in the 

Figure 0-25 block diagram). If you want to know the probability that a randomly selected battery 

will last longer than 400 hours, you can approximate the probability value by the area under the 

curve to the right of the value 4. The function that models the histogram of the random variable 

is the probability density function. 

 

The gap output code segment also outputs a cluster of the angle to gap and the size of gap.  

The angle to gap is determined by sending its index to the index array function connected to the 

direction angles array.  The index is the offset + ½ size.  The size of gap output is calculated by 

multiplying the size value and the difference between two adjacent angle values extracted from 

the first two array values by the index array function. 

 

Draw a flow chart of the gap feature extraction code.  Use the following symbols to represent 

different operations: 

 

Oval - program terminations,  

Diamond – selection (Case structure and select function) 

Parallelogram - input and output  

Rectangle - a process 

Small circle - beginning and end of a subset of the entire VI 

Arrows - flow of control between elements  

 

Flowchart drawing-symbol tools are available in Microsoft Office Word and other programs. 

 

After determining the offset and size of the largest gap, the VFH code outputs the information 

and creates a histogram in the code shown in Figure 0-27.  The angles array is wired to a For 

loop tunnel to set the number of iterations with auto indexing.  The size and the offset of the gap 

with the best score are input to the loop and summed.  If the sum is less than the loop index, i, 

which is also the array index, or the offset,  the Less? Function outputs True to the logical AND 



function.  If the loop index is also greater than or equal to the offset, 0.5 is written to the output 

array.  Otherwise 0 is written to the output array.  This sends an array of 0.5 and 0 values to the 

histogram along with the array of direction angles.  The result is to show the location of the 

largest gap in the histogram.  The histogram also plots the array of 0’s and 1’s for gaps and 

obstacles respectively versus the diection angles array. 



 

 

 

 

 
 

Figure 0-27. Gap data output section of the VFH block diagram 

 

The Simple VFH VI also outputs an angle and a distance to the closest obstacle.  The closest 

obstacle is determined by wiring the distances array to the Array Max & Min function and writing 

the Min output to the distance to obstacle.  The angle is determined by wiring the index of the 

Min value to an Index Array function connected to the direction angles array. 

 

The output from the Simple VFH is sent to the Drive Towards Gap VI as shown in Figure 0-18.  

The Drive Towards Gap code is shown in Figure 0-28 where units are converted and the 

steering frame velocity array is assembled as explained in the previous experiment. 

 

direction 
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Best gap  
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size 



 
 

Figure 0-28. Drive Towards Gap VI block diagram 

 

The process of extracting gap features requires input data of two 1D arrays: distances and 

direction angles arrays that are created in the code segment from the Roaming VI shown in 

Figure 0-29.  The Initialize VI initializes the scanned obstacles data structure, the Get Next Scan 

Angle VI calculates the next scan angle for PING))), and the Update Scan Distance adds the 

sensor distance reading to the scanned obstacles data. 

 

 
 

Figure 0-29. Code segment from the Roaming VI that generates the distances and direction 
angles arrays 

 

The Initialize VI shown in Figure 0-30 creates a data structure for the angle and distance 

information by bundling two I32 scalars: current index and previous index, with two arrays: 

angles and distances into a cluster named scan angles.  The values for max angle, min angle, 

and scan angle: 65, -65, and 4 respectively are set by constants on the Roaming VI block 

diagram.  The number of values in the arrays are calculated by subtracting the min angle from 

the max angle and dividing by the scan angle, taking the absolute value, converting to a 32-bit 

integer, and incrementing by 1.  The calculated number of values in the arrays is written to N on 

the For loop to set the number of iterations.  Code inside the loop writes initial scan angle and 

distance values to the arrays.  Scan angle values are calculated by multiplying the loop iteration 

ccw servo 

angle (rad) 

PING))) distance (m) 



value, i, by the number of angle values + the min angle.  The positive infinity constant is written 

to all of the distance array elements. 

 

 
 

Figure 0-30. Initialize Scan Angle Data VI block diagram 

 

After initialization in front of the loop, the Get Next Scan Angle VI shown in Figure 0-31 executes 

iteratively in the loop.  It uses the In Place Element structure to control how the LabVIEW 

compiler performs to increases memory and VI efficiency. Without this structure, LabVIEW 

creates an additional space in memory, so it has a memory space for the previous values and a 

second memory space for new values.  This can be problematic when working with arrays and 

clusters with large numbers of elements on hardware like the sbRIO that has limited memory.  

With this structure you can eliminate the requirement to copy data values and maintain those 

values in memory, in essence using the same data space in memory by writing over previous 

values. The structure can perform several operations.  Right-click the border and select the 

node that matches the operation you want to perform, in this instance unbundle the cluster 

values on the left (input) side and rebundle them on the right (output) side.  Inside the structure, 

the current index value is written to the previous index.  The node contains nested Case 

structures.  If the current index is >0, and the size of the angles array is greater than the current 

index both True cases execute, and the difference between the current and previous indices is 

calculated and added to the current index.  This value is written to current index to update it.  

This value is also input to an index array function wired to the angles array to output the new 

angle value.  If the current index is not >0, the outer False case and the inner True case 

executes, and the current index is incremented by 1.  If the current index is >0, and the size of 

the angles array is not greater than the current index, the outer True case and the inner False 

cases execute, and the previous index is decremented by 1. Note that the values in the angles 

array do not change. 

 

 



  
 

Figure 0-31. Get Next Scan Angle VI block diagram 

 

Draw a flow chart for the Get Next Scan Angle VI code. 

 

The modified scan angle data structure output from the Get Next Scan Angle VI is written to the 

Write Sensor Servo Angle VI which rotates the servo and PING))) to a new position with the 

code shown in Figure 0-16.  After it executes, the next range data is acquired by PING))) and 

written to the distances array in the scan angles data structure with the code shown in Figure 

0-32.  The Threshold 1D Array function compares threshold y to the values in the array until it 

finds a pair of consecutive elements such that y is greater than the value of the first element and 

less than or equal to the value of the second element.  LabVIEW calculates a fractional index, x 

for the position of y between the two values. Suppose the array elements are 2.3, 5.2, 7.8, 7.9, 

10.0, the start index is 0, and the threshold y is 6.5. The output is 1.5 because 6.5 is halfway 

between 5.2 (index 1) and 7.8 (index 2). The output is changed to an integer and is used to set 

the index at which the new scan distance is written over the previous value in the distances 

array. 

 

 
 

Figure 0-32. Update Scan Distance VI block diagram 

 

Add the Simple VFH VI (Functions>>Robotics>>Obstacles palette) to the Acquire and Display 

Range Data VI developed previously as shown in Figure 0-33.  Create an environment similar to 

that used previously to test the Acquire & Display Range Data VI.  Run the VI with DaNI in a 

stationay position while PING))) scans the environment to obtain results similar to Figure 0-34.  

Compare the output of the XY graph with the VFH histogram and explain the differences.  

Change the environment with different obstacles in different locations and distances.  Continue 

the comparison between the histogram and xy graph.  What happens if you increase  from 1 

to 4? 

 



 
 

Figure 0-33. Acquire & Display Range Data VI with VFH VI block diagram 

 

 

 
 

Figure 0-34. Range data comparison with VFH histogram 

 

Modify the environment so there are at least two gaps.  Add functionality to the VI above so it 

displays a list of gaps and their scores.  Manually calculate the score of one of the gaps and 

compare it with the results from the VI. 



 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



Experiment 6 – Localization 
 

Instructor’s Notes 

 

This experiment requires that the previous experiment be completed.  Similar experimental area 

and tools used in the previous experiment are used here. 

Goal 

Determine DaNI’s location in the environment with odometric localization (dead reckoning). 

 

Build an occupancy grid map. 

 

Required Components 
  

  

Linear distance measuring tool like a ruler, meter stick, or tape measure. 

  

Angle measuring tool like a protractor. 

  

Background 

 

Students should study Siegwart et al (2011) chapter 5.  This experiment requires that the 

previous experiments have been completed. 

 

Experiment 6-1 Odometric Localization (Dead 
Reckoning) 
 

Figure 0-1 introduced local and global reference frames.  Previous experiments measured 

distances to obstacles and extracted line features relative to DaNI in the local reference frame.  

The roaming VI also used relative positions.  However, sometimes you need to know determine 

global positions of DaNI and obstacles (occupied space) and open space. 

 

A previous experiment characterized the wheel encoders and explained the FPGA code that 

uses their feedback data in a PID algorithm to control wheel velocity.  You determined the wheel 



circumference and evaluated the errors in orientation and distance in driving from point A to 

point B.  In this experiment, you will develop code to send DaNI in a path that returns to the 

starting point using the encoder data.  Siegwart et al (2011) calls this practice odometric position 

estimation, other roboticists term it dead reckoning. 

 

Create a VI that will drive a closed path from point A to B, C, D and back to A in a 1 m square 

path.  Record the error in orientation and distance at each point.  Evaluate the propagation of 

the error. 

 

Repeat 3 times, stopping after each circuit so the position resets to (0,0) before the next circuit 

and report the maximum and average errors. 

 

Repeat 3 times without stopping and don’t reset to (0,0) after each circuit and report the 

propagation of errors. 

 

Siegwart et al (2011) explains that the errors are from three sources:  

 

1. Distance (sum of wheel movements),  

2. Turn error (difference of the wheel movements when turning), and  

3. Drift error (difference in wheel error causes angular orientation error  = d sin  which is the 

largest of the three errors).  The text presents the following analysis.  Use the data from the 

above experiment to evaluate the variables in the following. 

 

 

 



 

 

Experiment 6-2 Localize with Range Data 
 

 

If the robot has an environmental map stored in its computer, it can use it to keep position 

uncertainty from growing unbounded when using odometric localization.  The robot can localize 

itself in relation to the map.  

 

Create a VI that includes reading a file containing map data.  The map data might be distances 

to sides of boxes placed strategically so DaNI can use the range data (distances and angles) to 

calculate its position at the start point of the circuit in the previous experiment.  How many range 

data measurements are necessary to determine position?  In essence DaNI is going to use the 

range data to the obstacles to measure its error automatically after creating the circuit, report its 



new coordinates, and calculate the error from (0,0).  Test the VI by driving the circuit, 

automatically calculating the error and comparing the result to the actual error.  How does the 

error in ultrasonic range data affect the result?   

 

What change would you have to make in the above map, obstacle environment, and VI to report 

orientation in addition to position after completing the circuit? 

Experiment 6-3 Occupancy grid map 
 

 

Create a VI that will build an occupancy grid map of an area.  The area should be designed to 

contain some obstacles and to have some free space.  The area could be approximately 2 m x 

2 m but a larger area or a rectangular area with one direction over 3 m would be better.  

Represent the occupancy map as a set of 0s and 1s in a file as a matrix or table.  Graph the 

occupancy grid results in an XY graph on the front panel.  Choose a large cell size like 0.25 m 

so if the area is 2 m x 2 m, the map will have 64 cells in an 8 x 8 matrix.  Write 0s in all of the 

cells in the map file to begin.  Place DaNI within the area and take a series of range data sets 

with DaNI positioned over the same point but rotating 45 deg after each data set until DaNI has 

rotated 315 deg cw to cover the entire area around the robot.  This will produce 7 data sets.  

Assume the point where DaNI is located is at global coordinate (0,0).  Determine the global x 

and y coordinates of all obstacles.  Determine which cells contain the obstacle coordinates.  

Write a 1 to cells that are occupied.  Leave 0 values in any cells that can’t be seen because 

obstacles block the ultrasound meaning 0 represents both free and unmapped cells.   

 

 

 

 

 

 

 



Optional Projects and Competitions 
 

Obstacle avoidance, Localization and Mapping 
 

Set up a space with four walls and two stationary obstacles.  Create a VI that will roam around 

the space and report the position of the walls and obstacles in an occupancy grid map where 

the grids are 0.5 m square.  The occupancy grid result will be written to a file on the sbRIO 

during/after roaming.  After roaming, connect to a host via Ethernet cable, communicate the file 

to the host, and display the map in an XY graph on the host.  You get three tries and you are 

allowed to improve your VI after each try.  Make it a competition by reporting time to complete 

the map and the level of accuracy of the map. 

 

Obstacle avoidance, Localization, Mapping, and 
Object Recognition  
 

Set up a space with four walls and two stationary obstacles.  The obstacles have significantly 

different geometries for example a chair and a box, or a chair and a doll.  Identify one of the two 

objects as a target.  Create a VI that will roam around the space and report the position of the 

target obstacle.  Write the position to a file on the sbRIO during/after roaming.  After roaming, 

connect to a host via Ethernet cable, communicate the file to the host, and display the obstacle 

position in an XY graph on the host.  Make it a competition by reporting time to complete the 

map and the level of accuracy of the map.  You get three tries and you are allowed to improve 

your VI after each try.  Make it a competition by reporting time to locate the target and the 

accuracy of the location. 

 

Obstacle Avoidance, Mapping, and Navigation 
 

Set up a maze that has one entrance and one exit with wooden or cardboard walls.  Include at 

least one dead end passage, one cw turn, and one ccw turn.  Create a VI that will navigate the 

maze with purely reactionary control.  Report the time to navigate the maze. You get three tries 

and you are allowed to improve your VI after each try.  Make it a competition by reporting time 

to complete the maze and the total distance travelled. 

 

Increase the difficulty by creating a map of the maze that is communicated to and displayed to a 

host computer at the end of navigation.  



Hardware Enhancement 
 

Each student or team is given a budget for additional sensor(s) purchase to improve 

performance in one of the above projects.  Students should evaluate alternative sensors to 

decide which will improve performance and can be implemented on DaNI.  Sensors could be 

from sparkfun, from one of the FRC vendors, from another source, or from inventory at the 

institution. 

 

 

 

 

 


