Building a MUX-DEMUX Circuit Lab

Overview:
In this lab you will learn how to model a combinatorial circuit using mixed-modeling
style of Verilog HDL.

Outcome:

You will understand how to model a combinatorial circuit using various modeling styles
available in Verilog HDL. You will learn how to create a model using ISE create project
wizard. You will instantiate lower-level models to create a bigger model. You will use
ISE simulator to simulate the design. You will add user constraint file (ucf) to assign
pins so the design can be targeted to National Instruments (NI) Digital Electronics FPGA
Board. You will implement the design and create a bitstream file using ISE’s
implementation tools. Once bitstream is created, you will download using ISE’s
IMPACT program and verify the design functionality.

References:
1. National Instruments’ Digital Electronics FPGA Board user manual

2. Verilog HDL books
Stephen Brown, Zvonko G. Vranesic, “Fundamentals of Digital Logic with Verilog Design”, 2002
Zainalabedin Navabi, “Verilog Digital Systems Design: RT Level Synthesis, Testbench, and
Verification”, 2005
Samir Paltinkar, “Verilog HDL: A Guide to Digital Design and Synthesis”, 2003
Joseph Cavanagh, “Verilog HDL: Digital Design and Modeling”, 2007
Michael D. Ciletti, “Modeling, Synthesis, and Rapid Prototyping with Verilog HDL”, 2003
Douglas J. Smith, “HDL Chip Design: A Practical Guide for Designing, Synthesizing and Simulating
ASICs and FPGAs using VHDL or Verilog”, 1996

3. On-line references:
Verilog HDL Reference Card: http://www.stanford.edu/class/ee183/
handouts win2003/VerilogQuickRef.pdf

Problem Statement:

Design a combinatorial multiplexer-demultiplexer circuit using gate-level, data-flow, and
behavioral modeling styles. The multiplexer you will design will be 4-to-1 and the
demultiplexer will be 2-to-4, requiring eight inputs which you will provide using
switches. You will use BTNO to select either output of the multiplexer or demultiplexer.
When depressed you will output demultiplexer output otherwise multiplexer output.

Implementation:

The circuit to be designed consists of two functional blocks: mux and demux. They can
be modeled using behavioral modeling style. The output selection can be implemented
using continuous assignment statements. The hierarchical block diagram of the complete
system is shown below.

mux_demux_top.v

BTNO

SW0—
SW1—

SWa2—3
sw3—t sel0 self 4 4

SW4——-I |
sSWs—————
SW6 >

SW7 A \r/
combinatorial block

demux.v

mux.v

Procedure:
Extract resources.zip file in c:\NI\Verilog_Labs folder
1. Create a ISE project

Launch ISE: Select Start — Programs — Xilinx ISE Design Suite 10.1 —
ISE — Project Navigator

In the Project Navigator, select File — New Project. The New Project Wizard
opens

For Project Location, use the “..” button to browse to C:\\NI\Verilog_labs, and
then click OK

For Project Name, type muxdemux_lab

Click Next

Select the following options and click Next

Device Family: Spartan3E

Device: xc3s500E

Package: ft256

Speed Grade: -5

Synthesis Tool: XST (VHDL/Verilog)
Simulator: ISE Simulator (VHDL/Verilog)
Preferred Language: Verilog

ANANA VA N N NN

E Hewr Eroject Wizard - Device Froperties

Select the device and design flow far the project

Property Hame W alue

Product Categary Al w
Farmnily Spartan3E L
Device #C3ISE00E A4
Package FT25E w
Speed Bl w
Top-Level Source Type HOL

Sunthesiz Tool #5T WHDLAernilog) w
Sirmulator ISE Simmulator [YHD LA AYenilog) w
Preferred Language Yerilog w
Enable Enhanced Dezsign Summary

Enable Mezzage Filtering Fi

Dizplay Incremental Mezzages Fi

< Back] I Mext > l [Cancel

* The Create New Source dialog will appear. Click Next

* A Add Existing Sources form will be displayed. Click Next as we do not want
to add
Click Finish. An project will be created.

Sources for | Implementation

fis

= murdemue_lab

E xc32000e-5M256

* Click ﬁ‘—- or File — New to create a blank text file.
* Enter the following model for mux function using behavioral modeling style

1 module X |

2 input [3:0] muxdatain,

3 input [1:0] muxsel,

4 CULpUt reg mix out

5 1:

&

T always [(rmuxdatain or muxsel)

=] case (muxsel)

=] 2'h00: mux out = mwuxdatain[0] ;
10 2'h01: mux out = mwuxdatainf1];
11 2'h10: mux out = mwuxdatain[Z] ;
12 2'h11: mux out = mwuxdatain[3];
13 default @ mux out = 1'b0:;

14 endocase

15

16 encdimodule

17

Save the file as mux.v and notice the text changes into context driven (Verilog
language sensitive) format

Close the file

Similarly, create demux.v file with the content as shown below

1 module demux |

z2 input [1:0] dewuxdatain,

3 output reg [3:0] demux out

q 1

=

& always B (demuxdatain)

7 caze [(demuxdatain)

=t 2'b00: demwux_out = 4'b0O001;
= 2'h01l: dewux out = 4'b0O010;
10 2'hl0: dewux out = 4'b0100;
11 2'hll: dewux out = 4'b1000;
12 default: dewux out = 4'h0000;
13 endcase

13

15 endmodule

16

Save and close the file

Create a top-level model and enter the following code which instantiates mux
and demux models and adds data-flow modeling statements to complete the
design

1
Z
3
4
3
&
=
g
=]

10
11
12
13
14
15
1la
17
13
13
Z0
£1
2Z
23
Z4
£5
Z6
&7
Z8
9

module

ux_demux_ top

{

input [3:0] muxdatain,
input [1:0] mnuxsel,
input [1:0] demuxdatain,
input funcsel,
output [3:0] muxdemuxout

1

Wwire mwux out;

wire [3:0] demux out;

as=sign
as=sign
as=sign
as=sign

mux M1

muxdemuxout [0]
muxdemuxout [1]
muxdemuxout [2]
muxdemuxout [3]

{

= funecsel

funcs=el
funcs=el
funcs=el

Jmxdatain (maxdatain)
Jmaxsel (muxsel) ,
LU Out (mux out)

1

demux D1 |
Jdemixdatain (demuxdatain)

Ldermux_out (demux_out)

1

endmodule

L B]

derux_out [0]
derwux_out[1]
derux_out[2]
derwux_out[3]

* Save the model as mux_demux.v and close the file
* Note that even though the files have been created, they are not automatically

added to the project as they were created as blank text files
* To add the files, select the chip in the Sources window and right-click and

S oL

then select Add Source...

Sources for: | Implementation

=1 riumdermeg_lab

Mew Source,.,

Add Copy of %me...

Toggle Paths
H Properties,.,

mix_o ut;
mix_o ut;
mix_o ut;
mix_o ut;

+ Select all three verilog files (mux.v, demux.v, and mux_demux.v) and click
Open

Audd Existing Sources

Look, in:][5 muxdemu_lab _v__] i EF *
E:]_xmsgs

|y rurdernus_lab_xdb

by Recent [E] dernus v
D ocuments (Ef] o v
[‘: E rl'llJ:l:_dl'-_'rl'llJ:l:.'l.l'
Deszktop

¥

by Documents

<

by Computer

—

by Metwork. File name;]"mu:-:_demu:-:.v" "dermnu et . _:_i ﬂj
Flaces
Files of bype:]SDurDES[* bt * whd " vhdl " v *.abl ¥ abv "xco :_f_j Cancel]

o |
* Click OK to add the three files
* Expand the mux_demux entry in Sources window and observe the lower-level
modules

Sources for | Implementation

mumdemLs_lab
= £ #c3sh00e-5M256

,_dermuE_tap [mus_dermus.)

A1 - s [,]
D1 - demus [dems.]

* Create a new blank file and enter the following location constraints

1 NET ™Mmuxdatain[0]" LOC = "J11" | IOSTANDARD = LVCMOS33 ; #switch[0]

2 HNET "muxdatain[1]"™ LOC = "J1z" | IOSTANDARD = LVCMOS33 ; #switch[1]

3 HNET "muxdatain[2]" LOC = "H16" | IOSTANDARD = LVCMOS33 ; #switch[2]

4 HNET "muxdatain[3]" LOC = "H13" | IOSTANDARD = LVCMOS33 ; #switch[3]

5 HNET "muxsel[0]"™ LOC = "G12" | IOSTANDARD = LVCMOS33 ; #switchl[4]

6§ MNET Mmuxsel[1]" LOC = "E14" | IOSTANDARD = LVCMO333 ; #switch[5]

7 HNET "dewuxdatain[0]" LOC = "D1g" | IOSTANDARD = LVCMOS33 ; #switch[6)
§ HNET "demuxdatain[1]"™ LOC = "B1g" | IOSTANDARD = LVCMOS33 ; #switch[7]
9 HNET "funcsel” LOC = "C13" | IOSTANDARD = LVCMO333 ; # BTN[O]

10 NET Mmuxdemuxout[0]" LOC = "C11" | IOSTANDARD = LVCMOS33 ; #LED[O]

11 NET Mmuxdemuxout[1]" LOC = "D11" | IOSTANDARD = LVCMOS33 ; #LED[L]

12 NET Mmuxdemuxout[2]" LOC = "B11" | IOSTANDARD = LVCMOS33 ; #LED[Z]

13 MET Mmuxdewuxout[3]" LOC = "412" | IOSTANDARD = LVCMOS33 ; #LED[3]

12 |

* Save and close the file, giving mux_demux.ucf as the filename and

UCF(*.ucf) as the Save as type

Save fs

Save in: | 3 muxdemuz_lab

;.EII_IITISQS
; f_‘"| rurdernus_lab_xdb
ky Recent |
Documents
F—
Deszktop

~

iy Documents

=l

?X

e

ky Cormputer
)
by Metwark. File name: |mu:-:_u:|emu:-c.uu:ﬂ j
Flaces
Save as type: |L||:F [*.ucf) j Cancel |

* Add the ucf file to the project

2. Simulate the design using ISIM

* Right-click on the mux_demux entry in Sources window, right-click and
select Add Copy of Source...

* Browse to C:\NI\Verilog_labs\resouces\muxdemux_lab and select
mux_demux_top_tb.v. Notice that the Sources for window changes to
Behavioral Simulation from Implementation

+ Select mux_demux_top_tb in the Sources window, expand the Xilinx ISE
Simulator process in Processes window, and double-click Simulator
Behavioral Model

* The model will be compiled and the simulator will be run

* Simulation results will be displayed as shown below

Current Simulation N . o . - . - - - -
Time: 1000 ns 0 ns 100 ns 200 ns a00ns 400 ns 500 ns BOO ns 700 ns 800 ns 900 ns

#h

* Analyze and understand the simulation results
* Close the simulator

3. Implement the design
* Select implementation in Sources for window
* Select mux_demux_top module in Sources window and double-click on
Implement Design process in Processes window. This will go through
Synthesis, and Implementation stages
* When the implementation is completed, expand Implement Design process to
view the Place & Route report

Proc
Proceszes for minoritygate ~
™ AddEsisting 5ource
1 Create Mew Source
E Wiew Design Summary
£ % Design Utiities
+ %‘ Uszer Constraints

- P21\ Synthesize - XS T
=¥ 3 1\ Implement Design
#0200 Translate
P 2D Map
=31\ Place & Route
OF‘Iace % Route Report
Clock Region Report
Agynchronous Delay Report

O Fad Report

Guide Results Beport

* Double-click on the Place & Route report to view the report. Look at the
resource utilization and note that 3 slices are being used

* You can see similar information by clicking on Design Summary tab and
looking at the various information

4. Verify the design in hardware
+ Select mux_demux_top in Sources window and double-click on Generate
Programming File process to generate the bit file for the design

Froceszses for: minoritygate
[AddEsisting Source
[Create Mew Source

5 Wiew Design Summary

% Design Utiities

$ Uzer Constraints

2.1\ Synthesize - X5T

#2_1\ Implement Design

w4 Generate Programming File

2 Configure Target Device
¥ Update Bitstream with Processor Data

* Expand Configure Target Device process and double-click on Manage
Configuration Project (iMPACT) process

Proceszses for: minoritygate
[AddEsisting Source
[Create Mew Source
5 Wiew Design Summary
% Design Utiities
$ User Constraints
#2.1\ Synthesize - X5T
#2_1\ Implement Design
2D Generate Programming File
=-f2 Configure Target Device
Pd Generate Target PROMACE File

.:'

5 Manage Configuration Project [iMPACT])
® Update Bitstream with Processor Data
¢ Connect the board with the USB-JTAG cable
* Power ON the board
* Click Finish to use the JTAG chain
+ Select mux_demux.bit file to be assigned to xc3s500e device and click Open
* Click Bypass button for xcf04s and then OK to use FPGA device
programming
* Right-click on the FPGA and select Program
* This will program the FPGA and DONE light will lit on the board
* Once programmed successfully, verify the functionality by using SWO thru
SW7, push-button 0, and monitoring LDO thru LD3 output
o SWO thru SW3 are mux datain, SW4 and SWS5 are mux channel selector,
SW6 and SW7 are demux data in
o To test the design, first set all switches to OFF position. Since BTNO is
de-pressed it is selecting multiplexer functionality. Switch SWO to 1 and
notice that all LEDs (LD3:LDO0) are turned ON as mux channel selector
(SW5:SW4=00) is selecting channel 0 and by design it is sent to all LEDs
o Now change settings of mux channel selector to other than 00 and notice
that all LEDs are turned OFF. Depending on channel selection now turn

ON the corresponding channel switch and observe that all LEDs are
turned ON

o Now press BTNO to select de-multiplexing functionality. When pressed
observe that LDO alone is turned ON as SW7:SW6 are 00

o Change SW7:SW6 settings while BTNO is pressed and observe the
corresponding LED turning ON

* Once confirmed the functionality, power down the board and close ISE saving
project changes

Conclusion:

In this lab exercise you learned how to model a combinatorial circuit using mixed-
modeling styles of Verilog HDL. You were able to simulate the design and then verify
the complete design in hardware board.

