NI VeriStand 2010 Custom Device
Developer’s Guide (Beta)

This is a beta version of the guide. Please post questions, comments and feedback
on the NI Developer Zone.

Copyright
© 2010 National Instruments Corporation. All rights reserved.

Under the copyright laws, this publication may not be reproduced or transmitted in any form,
electronic or mechanical, including photocopying, recording, storing in an information retrieval
system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the
same. NI software is protected by copyright and other intellectual property laws. Where NI
software may be used to reproduce software or other materials belonging to others, you may
use NI software only to reproduce materials that you may reproduce in accordance with the
terms of any applicable license or other legal restriction.

Trademarks

National Instruments, NI, ni.com, LabVIEW and VeriStand are trademarks of National
Instruments Corporation. Refer to the Terms of Use section on ni.com/legal for more information
about National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their
respective companies.

Patents

For patents covering National Instruments products/technology, refer to the appropriate location:
Help » Patents in your software, the patents.txt file on your media, or the National Instruments
Patent Notice at ni.com/legal/patents.

Custom Device Developer's Guide © 2010 National Instruments 2 0of 85

(000 1Y7=1 0110 0 E- TP 6

1] 1o o 11 o 1o o 0SSR 7
What iS @ CUSIOM DEVICE?ceiiiiiiiiiiiiiieiee ettt ee s 7
Table of DIrectories and AlTASES ... coii i i e e e e e e e e e e eaeaen s 8
CUStOM DEeVICE FramEWOIKcooiiiiiiiiiiiiiieeee e 9
CONTIGUIATION ...ttt 10
L= 142 U0 o HAY A R 11

Y= T = o = 3SR 11

[0o 1T PP P PP PP PPPPPPPPPP 12
CUSIOM COAER ... 12
CUSEOM DEVICE XIML ...t ettt e e e et ettt e s e e e e e e eeetta e e e e e e e e e eeantnn e e eeaeeeennnes 12
When do you Need a CUStOM DEVICE?ouuiiiiiii it e e e e aaaaa s 13
B PAILY HAMAWATEo.vevceeeeeeeee ettt ee et e ettt n e e et e st e tes e s eaetesn s aeene e, 15
Unsupported Measurement or Generation MOGEooiiiviiiiiiiii e 15
T 10| PSPPI 15
CUSLOM DEVICE RISK ANGIYSIS... i it e e e et e e e e e e e e e e ettt e e eeaeas 15
LabVIEW Application DEVEIOPIMENTuu ittt neenne 15
LabVIEW Real-Time Application DevelopmeNnt.........ccooii i 16
NI VeriStand BaCKGrOUNGuuuuiiiiiiiiiiiiii bbb bsneannneennes 16
Hardware Driver DEVEIOPMENToooiiiiiii it e et e e e e e e ar e e e e 16
=TS U] o PP P TP PP PR PPRPPRPTRRTRN 17
Planning the CUSTOM DEVICEcoiiiiiiiiiiiiiiiiiiiiie ettt 17
CRANNEIS ... 18

P T OPEITIES .. 20
(TN (o] g AT ToA Tt B =Tl 4 F= U1 T 23
HIBT AT CRY .. 23
= 10 1P 27
EXITA PAOES .. e 29

= 10 T P 30

GUID 30

DoAY 1 =T od =T = 1 o] o 31

BUIID SPECITICALION ... 31

) oL PP SPUPPTRUPPPIN 32
ASYNCNTONOUS ... 33
INliNE Hardware INEITACEcoiieeeeiee e e e e e e e e e 36

L= 14 = PSPPSR 36

Custom Device Developer's Guide © 2010 National Instruments 30f85

Read Data from HWV ... e e et a s e e e e e e e eeeat e e e e aeeeennnes 37

gL C= R D= L= B (o T LT PPN 38

L4 0 P 38

Inline Model INtEITACE ..o 38
EXECULE MOAEL..... et e e e et a e e e e e e e e eeaata e e e e eeaeeeanne 39

Table of Custom Device FrameWOTKScccooiiiiiieieeiee e 40
(@011 aToN o) B e O I 11T =Y 1o o TR 41
=Tz 11 1= YT Yo [PSPPSRI 41
LOW-LAtENCY MOUE ... e e e e et a s e e e e e e e e e sat e e e eeeeeannnes 42
Implement the CUSIOM DEVICEoeviiiiiiiiiiiiiiiiiie ettt 42
BUild the TemPlate PrOJECT........ i e e e e e e e e 43
BUild the CONfIQUIALIONuiiiiiiiii b 44
BUII The DIIVET ...ttt 52
Add Custom Device DEPENUENCIES........coooiie i 53
Channel Change DEetECHIONcii i e e e et e e e e e e eeraaaas 60
Debugging and BENCNMAIKINGcvviiiiiiiiiiiiiiiiiiiiie ettt 62
LabVIEW Debugging TECNNIQUES.........uuuuiii ettt e e e e e e aa e e e 62
(070 T0) [TV T Y= SRR 63
Printing tO the CONSOIEcoiiiiiii e e e et e e e e e e e r e e eaaes 63
Printing With NIVS Debug String VIoooiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 63
Printing With ni_emb.dlloooiiiiiii e 63
Distributed SYStEM MANAGETcie et ee e e et e e e e e ettt e e e e e e e e e ar e aeaeas 64
SyStem ChanNEISooiiiii 64
Table of Debugging and Benchmarking System Channels...............ccccvviiiien i, 64
System MONItOr AQT-0Ncooiiiiiiiiii e 65
Real-Time EXECULION TTACINGccieeeiiiiiiiiiee e eee et s e e e et e e e e e e e e et e e e e e e e e e e aa b e eeaeas 65
Table of RT Execution Tracing Channels........ccoooo oo 66
Additional Debugging Options for NI VeriStandcccooooeiiiiiiiiiii e, 66
Table of Debugging and Benchmarking TECNNIQUES...........uuuuuuriiimmiiiiiiiiiiiiiiiieiiiiieeneineneenenaen 67
Distributing the CUSIOM DEVICEii e e e e e e e e e eeeeeennnes 68
Custom DevVvice TIPS @Nd THCKS ... 68
Custom Device ENGINE EVENTSuuuiiii et e e e e e e e e eeetaa e e e e eaeeeeanes 69
BlOCK WItING @NA REATING ...ttt 70
WoOrking With String CONSTANTS........uuuuuuuiiiiiiiiiiiiiieetiei bbb ebaeeebeeeneenes 72
L1010 ¢ I =1 ¢ (0] 0o o L= SRPPRRPR 72

Custom Device Developer's Guide © 2010 National Instruments 4 of 85

U1 VY PSSR 72

Sort Channels DY FIFO LOCALIONuuuiiiiiiiiiiiiiiiiiiiiiiiieiiiieiiieie e eeeenseeseseeseenennnnnnne 73
Triggering Within the CUSTOM DEVICE...........uuiiiii i e e e e eaaas 74
Adding Extra Pages After Creating the Custom DeViCe Projectuuuuvummmimimmimnimninnnnnnnns 75
CUSIOM DEVICE XML ...ciiiiiiiiiiiieeeee e 76

(DT o] o o 0] (=T £ [o USSR 77

Limiting Occurrences of the CUStOM DEVICE..........ccciviiiiiiiii e 77

RENAME PrOECLION ...ceviiiiiiiiiiii ittt 77

1o] o Y £ 77

RUN-TIMe RIGt-ClICK MENUoiiiiiiii i e e e et eeaeeeaenes 78

DYNAMIC BUITONSeiiiiiiiieeeieie ettt ettt ettt e e e e e e e e e eeeeees 79

Upgrading VeriStand 2009 Custom DeVvices t0 2010ceeieieiiiiiiiiiiiiiee et eeerenns 80
Beyond the Template FrameEWOTKS...........ouviiiiiiiiiiiiiiiiiiiiiiei ettt 82

Inline Custom Device with Asynchronous Threadscooiiiiiiiiiiiiiicci e, 82
Custom Device Development JOD Aid ... 85

Custom Device Developer's Guide © 2010 National Instruments 5 of 85

Conventions
This document uses the following formatting and typographical conventions.

<> Angle brackets that contain numbers separated by an ellipsis represent a range
of values associated with a bit or signal name—for example, AO <0..3>.

» The » symbol leads you through nested menu items and dialog box options to a
final action. The sequence File » Page Setup » Options directs you to pull down
the File menu, select the Page Setup item, and select Options from the last

dialog box.
@ This icon denotes a tip, which alerts you to advisory information.
@ This icon denotes a note, which alerts you to important information.
A This icon denotes a caution, which advises you of precautions to take to avoid

injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click in the software, such as
menu items and dialog box options. Bold text also denotes parameter names,
controls and indicators on the front panel, dialog boxes, sections of dialog boxes,
menu names, and palette names.

green Underlined text in this color denotes a link to a help topic, help file, or Web
address.

purple Underlined text in this color denotes a visited link to a help topic, help file, or Web
address.

italic Italic text denotes variables, emphasis, cross-references, or an introduction to a

key concept. Italic text also denotes text that is a placeholder for a word or value
that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples. This
font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, operations, variables,
filenames, and extensions.

Custom Device Developer's Guide © 2010 National Instruments 6 of 85

Introduction

NI VeriStand is a ready-to-use, open software environment for configuring real-time testing
applications, including hardware-in-the-loop (HIL) test systems. With NI VeriStand, you can
configure real-time input/output (I0), stimulus profiles, data logging, alarming, and other tasks;
implement control algorithms or system simulations by importing models from a variety of
software environments; and build test system interfaces quickly with a run-time editable user
interface complete with ready-to-use tools. See NI Developer Zone Tutorial: What is NI
VeriStand for more information.

When necessary, you can customize and extend NI VeriStand’s open environment with
LabVIEW, ensuring it always meets application requirements. The purpose of this document is
to provide the background, design decisions, and technical information required to understand
and develop custom devices in NI VeriStand 2010.

Understanding the NI VeriStand Engine is prerequisite to this document. See NI
VeriStand Help » Components of a Project » Understanding the VeriStand Engine for
more information.

What is a Custom Device?

While NI VeriStand provides most of the functionality required by a real-time testing application,
NI has designed the environment to be customized and extended when necessary to ensure it
always meets application requirements. Custom devices are one of several ways to customize
and extend NI VeriStand. To learn about other ways you can customize NI VeriStand, see NI
Developer Zone Tutorial: Using LabVIEW and Other Software Environments with NI VeriStand.

Custom devices give the developer complete freedom in regards to execution. Any LabVIEW
code, or any code you can call from LabVIEW, can be made into a custom device.

Custom devices give the developer complete freedom to customize the operator interface to
within System Explorer. Custom devices may present whatever configuration experience
desired by the developers. From simple controls on a VI front panel, to a company branded
pop-up window, to a silent routine that scrapes the configuration from an ActiveX database — the
developer defines the configuration experience.

Custom devices typically consist of two VI libraries (configuration and engine) that define the
behavior of the device, and an XML file that tells NI VeriStand how to load, display, use and
deploy the device. Custom devices come from developers including National Instruments, 3rd
parties, and in-house developers. The developer builds the configuration and engine libraries
and the XML file from Source Distributions in LabVIEW.

The LabVIEW Project for most custom devices starts with a template project. A VI called the
Custom Device Template Tool scripts the template project based on a few inputs from the
developer. The developer then adds-to and changes the template project to fulfill the
requirements of the custom device. The Custom Device Template Tool installs on top of NI
LabVIEW with the Full and PC versions of NI VeriStand.

Custom Device Developer's Guide © 2010 National Instruments 7 of 85

http://zone.ni.com/devzone/cda/tut/p/id/9347
http://zone.ni.com/devzone/cda/tut/p/id/9347
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC5.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/
http://zone.ni.com/devzone/cda/tut/p/id/9366
http://zone.ni.com/devzone/cda/tut/p/id/9366
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/lv_file_extensions/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/build_source_distrib/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/creating_custom_dev/

@ The LabVIEW Project is needed to build the custom device, but only the configuration
and engine libraries and the XML file are required to use the custom device in NI

VeriStand.

After obtaining (or building himself) the custom device’s libraries, the operator places them in
the NI VeriStand <Common Data>\Custom Devices directory. This directory varies with the

host operating system.

<Common Data>

Table of Directories and Aliases

Alias: To Common Doc Dir

Generic Windows OS

<Public Documents>\National Instruments\NI
VeriStand 2010

Default Windows XP

C:\Documents and Settings\All Users\Shared
Documents\National Instruments\NI VeriStand 2010

Default Windows Vista &
7

C:\Users\Public\Documents\National Instruments\NI
VeriStand 2010

<Application Data>

Alias: To Application Data Dir

Generic Windows OS

<Application Data>\National Instruments\NI
VeriStand 2010

Default Windows XP

C:\Documents and Settings\All Users\Application
Data\National Instruments\NI VeriStand 2010

Default Windows Vista &
7

C:\ProgramData\National Instruments\NI VeriStand
2010

<Base>

Alias: To Base

Generic Windows OS

<Program Files>\National Instruments\NI VeriStand
2010

Default Windows XP,
Vista & 7

C:\Program Files\National Instruments\VeriStand
2010

<Custom Device Engine Destination>

PharLap / ETX

C:\ni-rt\veristand\custom devices\<custom device
name>\

NI VeriStand parses <Common Data>\Custom Devices for custom device XML files when it
first launches. You must restart NI VeriStand to recognize newly added or modified custom
device XML files. The custom device may then be added to the system definition by right-
clicking Custom Devices from System Definition » Targets » Controller in the configuration

tree.

It's not necessary for the operator to have any knowledge of LabVIEW or custom device
development to use the custom device. It's not necessary to have the LabVIEW Project to use

Custom Device Developer's Guide

© 2010 National Instruments 8 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/custom_devices_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/root_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/targets_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/

a custom device. It's courteous common practice to provide the LabVIEW Project along with
the custom device. Providing the project allows operators and other developers to modify the
custom device to suit their specific requirements.

4 System Explorer - Sinewave Delay. nivssdf = &g
s p Y.
Fle Edt Tools Help
BoSH & 8 B A
=il Sinewave Delay
S Targets :
Pa Custom Devices
4l Contraller
%--:? System Channels Custom Devices contains any custom devices you add. Custom devices execute user-defined actions,
4B Hardware determined by LabVIEW VIs. You can create a custom device using the LabVIEW development environment.
e Stimulus
it Simulation Models What do you want to do?
@) Alarms
4+Q) Procedures Add a custom device
() (Custom Navicac. Tomdd o ot doio-_right-click Custom Devices in the configuration tree and select the custom device that
g User h| [Natianal Tnstiiments 1) Embedded Data Logger S ROLEUE MR,
4 f Calculated Channels Pickering 40-295
L9 XNET Databases Gopel LIN ce
- 23 Al Lambda Genesys DC Power Supply
e e reeve s aevice, select the custom device name in the configuration tree and dlick the red X button.
28 System Mappings
vy Data Sharing Network
593 System Initialization View or change a custom device

To view or change a custom device, select the custom device name in the configuration tree. The Custom
Device Configuration page appears to the right of the configuration tree.

For more information about adding and configuring custom devices, refer to the Configuring and Running a
Project book of the NI VeriStand Help, available by selecting Help»Search the NI VeriStand Help.

Submit feedback on this topic

Figure: Adding a Custom Device to a System Definition

Most custom devices consist of the two VI libraries and XML file mentioned above. Logically,
custom devices consist of three parts.

1. Custom Device Framework
2. Custom Code
3. Custom Device XML File

The custom device framework consists of type definitions, specifically-named controls and
indicators, template Vis and a LabVIEW API. Together these items for the rules, or framework,
that allows any conforming VI to interact with NI VeriStand. There are five prebuilt types of
custom devices. Almost any requirement can be accomplished by adding or modifying code in
one of the five prebuilt devices.

The five prebuilt devices start with the Custom Device Template Tool. The template tool is
located in <vi.lib>\ NI Veristand\Custom Device Tools\Custom Device
Template Tool\Custom Device Template Tool.vi.

The developer specifies the type of custom device before running the template tool. The tool
generates the LabVIEW Project for the new custom device. The exact resources in the project
depend on the type of custom device selected.

The project is pre-populated with VlIs, LabVIEW Libraries, an XML File, and two build
specifications. These resources provide the framework upon which almost all custom devices
are built.

Custom Device Developer's Guide © 2010 National Instruments 9 of 85

@ NI VeriStand evolved from NI Dynamic Test Software (NI-DTS). NI-DTS evolved from
Intellectual Property (IP) called EASE obtained from a 3" party. EASE made basic
provisions for add-on LabVIEW code. In a sense this was the first custom device
framework. Several “custom devices” were built for the original framework, and NI has
mutated them from EASE through NI-DTS and into NI-VeriStand. If you come across a
custom device that doesn't fit into the framework provided by the Custom Device
Template Tool, you may have stumbled upon one of the original custom devices.

For each of the five types of custom
devices, you’ll see two VI libraries in the
LabVIEW source project: Custom
Device API.lvlib and Custom
Device Name Custom Device.lvlib.

The Custom Device API library contains
most of the type definitions, template Vis
and LabVIEW API needed to interact with
NI VeriStand’s data and timing resources.
They give a VI the ability to behave as a
native task in the NI VeriStand Engine.
Some of these Vls also appear on the
LabVIEW palette in NI VeriStand » Custom

i3 Project Explorer - My Custom Device... E]@

File Edit VYiew Project Operate Tools Window Help

eS| X vt | B~

Device API.

The <custom device name> library
contains the custom device’s configuration
and RT Engine VIs. These correspond to
the configuration and engine VI libraries
(or LLBs) mentioned earlier. Notice the
front panel and block diagram of these VIs
have been populated with objects from the
Custom Device API library.

Items | Files

—- &), Project: My Custom Device Custom Device Project.lvpro ‘
- B My Computer

= [3 Custom Device APLIvib

s [J Controls

~

- [J System Navigation
- [J Configuration
- [Templates
- [Private
[Utiliey
= Custom Device My Custom Device,xml
=- L;’r My Custom Device Custom Device.lvlib
> L_-_gl My Custom Device Initialization YI.vi
. My Custom Device Main Page.vi
@) My Custom Device RT Driver YL.vi
- 22" Dependencies
& °’4}_ Build Specifications

tB Configuration

'_13 Engine

&
*

Figure: A New Custom Device Project

The custom device’s configuration defines the operator’s experience adding and configuring the
custom device. It is the device's operator interface (Ol) or user interface (Ul). The Custom
Device Template Tool provides two VIs for configuration: Initialization and Main. Additional VIs

may be added as needed.

Custom Device Developer's Guide © 2010 National Instruments 10 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/TOC12.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm

When a custom device VI's front panel is presented to the operator in the System
Explorer window, that VI is called a page. Pages are a subset of the VIs that make up a
custom device.

The Custom Device Template Tool names the initialization VI <Custom Device Name>
Initialization VI.vi. Itrunsinthe background when the custom device is first added to

the system definition. The initialization page does not run again unless the operator removes
and re-adds the custom device.

While you may rename certain objects in the custom device’s LabVIEW Project, it's
important to understand the ramifications of doing so. For example, the Initialization VI
is referenced by name in the custom device XML file. This file is generated when you
first run the Custom Device Template Tool. If you rename the Initialization VI after
running the tool, you'll need to manually change the path to the Initialization VI in the
custom device XML file.

The Initialization Page runs each time a new instance of the same custom device is added to
the system definition. NI VeriStand retains state information for each instance of a custom
device in the System Definition (.nivssdf) file. State is defined by the value of each control,
indicator, and property (properties are covered later) of the page. This file is human-readable
XML, so you can open the file with a text editor and take a look. There’s also a .NET API for
modifying the System Definition programmatically.

The Custom Device Template Tool names the main page <Custom Device Name> Main
Page.vi. After the custom device has been added to the system definition, the main page

runs whenever the operator clicks on the on the custom device’s top-level item in System
Explorer’s configuration tree.

L System Explorer - Blank Project. mivssdf =)o
Fle Edt Tooks Help
O H | % X aBE A
= %ﬂk P'”‘t“t Custom Device Item Settings
3 Targets
2 Controller
are hame
AES-201
|5 o Main Page VI
A/ Description .
| & Hordwars Inputs — runs in the
| ~
The top_level i‘iiwm;at:’rlvﬁ;l:uae\s 1 configuration
custom device & e chore g
: g - fe Calnulated Channels pane
-t Stimulus .
item is selected o
i @ Procedures
n the g NHET Databsses
s H 127 System Channel
configuration i e chormet a
2= System Mappings
tree. o5 ata Sharing Network Resource umber Configure Range
232 System [nktialization 0 +1V =

Use ADDataFromCh<1..8> to bring
digitized data From your AES-201 into
the NI VeriStand system. The 6Hz
single-pole LPF may be togaled from
the channel page.

Use ADENCh<1..8> to enable or
disable the channel. Zero disables the
charnel, Mon-zera enables the
charnel,

Custom Device Developer's Guide © 2010 National Instruments 11 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/comp_of_project/#system_definition_file
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/vs_file_extensions/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/vs_file_extensions/
http://zone.ni.com/devzone/cda/tut/p/id/9366#toc2

Figure: Highlighting the Top-Level Item Runs the Main Page

The Custom Device Template Tool names the engine <Custom Device Name> RT
Driver.vi. Itdefines the behavior of the custom device on the execution host. The RT
Driver VI runs on the execution host regardless of the target’s operating system.

@ NI VeriStand 2009 did not support the NI VeriStand Engine on VxWorks operating
systems. Starting with NI VeriStand 2010, if you want to support VxXWorks targets such
as Compact RIO, you must compile the engine library for VxWorks. PharLap and
Windows engines do not require additional compilation.

The engine runs after the custom device has been added to the system definition, configured by
the operator, and deployed to the execution host. The developer usually adds initialization,
steady-state, and shutdown code to the engine template. There aren’t any hard boundaries on
what code you can put into the engine, only on what code you should put in the engine.

NI VeriStand deploys the engine when the operator clicks Run Project from the NI VeriStand
Getting Started Window, selects Operate » Run or Operate » Deploy from the Project
Explorer, or when the system definition is deployed using the NI VeriStand Execution API.

Each of the five prebuilt custom devices has a different engine VI. Each engine VI executes at a
different time with respect to other NI VeriStand components. The timing requirements of a
custom device, and thus the type of device selected, are functions of when the device needs to
execute with respect to other NI VeriStand Engine components. We'll cover this in detail later
on.

Not all requirements can be satisfied by one of the five types of prebuilt custom devices. Some
custom devices require multiple engine libraries (to support different real-time operating
systems for example). NI VeriStand — Set Custom Device Driver VI allows you to
programmatically change the driver library for a custom device. Some custom devices use the
prebuilt template as a launching pad for multiple parallel processes or complex frameworks.

See the section Beyond the Template Frameworks for more information. Again, custom devices
give the developer complete freedom with regard to Ol/Ul and execution.

The custom code performs any functionality desired by the custom device developer. While the
initialization and engine frameworks provide access to NI VeriStand data and timing resources,
it's up to the developer to implement the code to meet specification.

For example, the custom code might perform a single A/D conversion on a 3" party digitizer.
The framework provides the means for sending the digitized value to the rest of the NI
VeriStand system so it can be mapped to channels, used in a stimulus profile, etc. Again, there
aren’t any hard boundaries on the code you can put into the driver.

Each custom device has an XML file that contains information used by NI VeriStand to load,
configure, display, deploy and run the device. The basic information includes VI and
dependency paths, page names, action and menu items, and Meta data for the various pages
that make up the custom device. The Custom Device Template Tool generates an XML file for

Custom Device Developer's Guide © 2010 National Instruments 12 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/veristand_glossary/#execution_host
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_driver_vi/

you and include it in the template LabVIEW Project. Any properly-formatted XML file will be
parsed by NI VeriStand. After the XML file is created by the Custom Device Template Tool, all

edits to it are manual, i.e. it is not automatically updated to reflect changes made by the
developer.

& The custom device XML does not automatically synchronize with changes to the
LabVIEW project, nor does it automatically deploy. Be sure to modify the XML in the
LabVIEW Project directory when making changes. Building the Initialization
specification overwrites the XML in the <Common Data>\Custom Devices folder.

The XML file provides the ability to customize the appearance and behavior of the custom
device in System Explorer. For example, you can change the default glyph or add a right-click
menu to a custom device by adding tags to the custom device XML file.

Since NI VeriStand parses <Common Data> for custom devices when it launches, a
corrupt custom device XML file can affect the overall NI VeriStand system. You should
exercise care and make a backup of the custom device XML before modifying it.

Custom Device.lvproj

XML Custom Device
Required to run the APLIVIb Custom Device.Ivlib Build Specifications
device .

Initialization VI
Runs when device is
1st added to sys
explorer

Contains all resources
for developing the
custom device

Engine.llb
== Required to run the
custom device

Main Page
Runs when user clicks
on device in sys
explorer

Configuration.llb
Required to run the
custom device

RT Driver
Runs on execution
target after configured
and deployed

Figure: Diagram of the LabVIEW Project Created by the Custom Device Template Tool

When do you Need a Custom Device?

The built-in components of an NI VeriStand Project are listed in NI VeriStand Help » Navigating
the NI VeriStand Environment » System Explorer Window. If the built-in components do not
fulfill a specification, it can most likely be fulfilled by one of the customization methods shown in

NI Developer Zone Tutorial: Using LabVIEW and Other Software Environments with NI
VeriStand.

Four custom devices are included with NI VeriStand 2010. These devices are listed in NI
VeriStand Help » NI VeriStand Reference » Custom Devices Included with NI VeriStand.

Custom Device Developer's Guide © 2010 National Instruments 13 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC4.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC4.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/system_explorer/
http://zone.ni.com/devzone/cda/tut/p/id/9366
http://zone.ni.com/devzone/cda/tut/p/id/9366
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC15.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/custom_devices/

Embedded Data Logger

Gopel LIN

Lambda Genesys DC Power Supply
Pickering 40-295

PO

In addition to these four devices, a variety of custom devices have already been implemented
by National Instruments and are available for download. You should consult NI Developer Zone
Tutorial: NI VeriStand Add-ons to determine if a custom device has already been developed to
fulfill your specification.

Several hardware vendors have implemented custom devices for their hardware. You should
check with the manufacturer that a custom device doesn’t exist before you build one.

Custom Device Developer's Guide © 2010 National Instruments 14 of 85

http://zone.ni.com/devzone/cda/tut/p/id/9346
http://zone.ni.com/devzone/cda/tut/p/id/9346

In general, there are three specifications that are best-suited for a custom device.

1. 3" Party Hardware
2. Unsupported Measurement or Generation Mode
3. Feature

A list of hardware natively supported by NI VeriStand is found in NI VeriStand Help » NI
VeriStand Reference » Supported National Instruments Hardware. If the application requires
other hardware, it can probably be implemented in a custom device.

Check NI VeriStand Help » Configuring and Running a Project » Configuring a System
Definition File » Adding and Configuring Hardware Devices to determine if the required
measurement or generation mode of your hardware is supported. If not, it can probably be
implemented in a custom device. For example, single-point hardware-timed analog acquisition
on NI-DAQ devices is supported out-of-the-box. Continuous analog acquisition can be
implemented as a custom device.

All of the common functionality necessary for most real-time testing applications such as host
interface communication, data logging, stimulus generation, etc, is provided by NI VeriStand —
ready to configure and use. You should first try to meet specifications with the built-in
functionality because it is engineered, tested, and supported by National Instruments.

If a built-in feature does not exist, it can be implemented by extending NI VeriStand. See NI
Developer Zone Tutorial: Using LabVIEW and Other Software Environments with NI VeriStand
for a complete list of ways to customize and extend NI VeriStand. Certain features are best
implemented as custom devices. To determine when a custom device is the most appropriate
mechanism to meet a specification, you should be familiar with all the customization methods
available. A general rule-of-thumb is that custom devices implement features that require or
use NI VeriStand channel data on the execution host.

For example, there is a TDMS File Viewer tool built into the NI VeriStand Workspace. If you
need to log NI VeriStand channels to TDMS without first sending it back to the Workspace (as
with high-speed streaming), a custom device called the Embedded Data Logger fulfills this
requirement. This custom device ships with NI VeriStand 2010. On the other hand, if you need
to display previous test results on the workspace while a new test is running, a custom
workspace object may be more appropriate than a custom device. See NI Developer Zone
Tutorial: Creating Custom Workspace Objects for NI VeriStand for more information.

Custom Device Risk Analysis

The open nature of NI VeriStand is a strong advantage over other real-time/HIL testing
solutions. It's easy to take advantage of this extensibility by using custom devices written by
other developers. Writing your own custom device incurs a set of manageable risks. This
section provides a list of risks that should be considered before custom device development
begins.

Custom devices are written in LabVIEW. The framework generated by the Custom Device
Template Tool is single-loop or action-engine VI. This architecture may be suitable for simple
custom devices.

Custom Device Developer's Guide © 2010 National Instruments 15 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC15.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC15.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/supported_ni_hardware/
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC6.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC7.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC7.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/add_configure_hw/
http://zone.ni.com/devzone/cda/tut/p/id/9366
http://zone.ni.com/devzone/cda/tut/p/id/9366
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/use_tools_menu_items/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/custom_devices/
http://zone.ni.com/devzone/cda/tut/p/id/9989
http://zone.ni.com/devzone/cda/tut/p/id/9989

Non-trivial devices will require more advanced architecture. A requisite for custom device
development is thorough knowledge of LabVIEW programming and application architectures.
This knowledge represents NI Certified LabVIEW Developer (CLD) level expertise, and is
typically obtained through NI's Training and Certification program by completing the LabVIEW
Core 1, Core 2, and Core 3 courses.

It should be mentioned that NI VeriStand custom devices are typically not large LabVIEW
applications. Custom devices are designed to be modular, self-contained plug-ins that add a
specific functionality to NI VeriStand. While custom devices are typically developed by a single
programmer, large application development best-practices may still apply. See LabVIEW 2010
Help: Best Practices for Large Application Development for more information.

Custom devices are typically designed to execute on real-time systems. This allows the
operator to perform deterministic HIL and RT test procedures. Programming for a real-time
system requires knowledge of real-time operating systems (RTOS) and specialized LabVIEW
development techniques. This knowledge is typically obtained through NI's Training and
Certification program by completing the Real-Time Application Development course, and it is
refined by working on several LabVIEW Real-Time applications.

Familiarity with the NI VeriStand Engine is crucial to successful custom device development.
The correct type of custom device cannot be selected in the Custom Device Template Tool
without understanding the implications of each. This knowledge is typically obtained by reading
the NI VeriStand 2010 Help, with an emphasis on Understanding the VeriStand Engine.

Experience with NI VeriStand from an operator's perspective is highly desired. This experience
enables you to build operator-friendly interfaces that conform to the standard look and feel of
other NI VeriStand components. Familiarity with NI VeriStand allows the developer to build-up a
complex system definition, which allows thorough and realistic testing and benchmarking.

Custom device must call a hardware or instrument driver to support 3“-party hardware. All
National Instruments hardware comes with a LabVIEW Application Program Interface (API) that
can be used in the custom device. However, just because a LabVIEW API exists does not
guarantee the custom device can be easily implemented. Consider the following points when
evaluating the feasibility of a custom device for 3"-party hardware.

[1 Does an Instrument Driver exist? See NI Developer Zone » Instrument Driver Network to
search for instrument drivers.

[Is a hardware driver available?

[0 Is the driver well documented?

[1 If necessary, is the driver compatible with LabVIEW Real-Time? See KnowledgeBase
3BMI76L1: How Can | Verify that My DLL is Executable in LabVIEW Real-Time for
instructions on checking compatibility.

NI VeriStand uses channels to pass data between different parts of the system, including to and
from custom devices. All NI VeriStand channels are LabVIEW double data type (DBL). See
LabVIEW 2010 Help » Fundamentals » Building the Block Diagram » How-To » Floating Point
Numbers for more information on LabVIEW data types.

Custom Device Developer's Guide © 2010 National Instruments 16 of 85

http://sine.ni.com/nips/cds/view/p/lang/en/nid/10647
http://www.ni.com/training/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/207868
http://sine.ni.com/nips/cds/view/p/lang/en/nid/207868
http://sine.ni.com/nips/cds/view/p/lang/en/nid/207869
http://sine.ni.com/nips/cds/view/p/lang/en/nid/207870
http://zone.ni.com/reference/en-XX/help/371361G-01/lvdevconcepts/best_practices_large_apps/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvdevconcepts/best_practices_large_apps/
http://www.ni.com/training/
http://www.ni.com/training/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/13760
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/
http://zone.ni.com/dzhp/app/main
http://www.ni.com/devzone/idnet/
http://ae.natinst.com/operations/ae/public.nsf/web/searchinternal/0bf52e6fac0bf9c286256edb00015230?OpenDocument
http://ae.natinst.com/operations/ae/public.nsf/web/searchinternal/0bf52e6fac0bf9c286256edb00015230?OpenDocument
http://zone.ni.com/reference/en-XX/help/371361G-01/
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC10.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC17.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC19.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/floating_point_numbers/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/floating_point_numbers/

[J Can the hardware requirement be met by passing LabVIEW DBLs to and from the
custom device during steady state operation?

If the hardware driver returns a vector, structure, or any hon-DBL data, it cannot be passed
directly from the custom device to the rest of the NI VeriStand system. The developer is
responsible for coercing the data (or using an alternative communication mechanism) to pass
data from the custom device to the rest of the system. For more information on the available
communication mechanisms, see LabVIEW 2010 Real-Time Module Help » Real-Time Module
Concepts » Sharing Data in Deterministic Applications » Exploring Remote Communication
Methods.

NI VeriStand also exposes its TCP pope via dynamic event registration. This pipe may suite
your remote communication requirements. See the Custom Device Engine Events section for
more information.

A custom device is one part of an NI VeriStand system. The complete state of the operator's
system is seldom known by the custom device developer. System state includes the following
information.

[J What are the specifications of the execution host and host computer?
[J What components are in the system definition?
o How computationally intense are the simulation models?
[l What loop rates are required?
[J What is the health and resource utilization of the system?

Ideally, the custom device is implemented to be minimally burdensome, extremely efficient, and
easy to use. Depending on its complexity, it may become necessary to test, debug, and
optimize the code on systems representative of the operator’'s system. Consider the following
example.

A custom device developer needs to benchmark a 3"-party hardware custom device. He adds
the custom device to the Sine Wave example that ships with NI VeriStand 2010. He deploys
the system definition to a quad-core NI-8110 RT controller. Adding the custom device to the
system in increased the target's CPU load by 10% per-core and RAM utilization increased
120KB. If the operator is deploying the same custom device to a single-core 8101 RT
controller, with an average CPU load of 60% because of a computationally intense model, it’s
unlikely the operator will achieve the same loop rate after adding the custom device. This
system may be incapable of running the custom device at all.

Time to test, debug and optimize the code must be factored into the development timeline. If
you're developing for a specific operator, then it's best to test on a system representative of their
system. If you're developing for unknown systems, then it may be appropriate to include the
specifications of the system used to obtain benchmarking and timing information with the
custom device documentation.

Planning the Custom Device

The most critical phase of custom device development is planning. Several idiosyncrasies of NI
VeriStand require more thorough planning than does a small stand-alone LabVIEW application.
There are five main things that must be planned.

1. Channels

Custom Device Developer's Guide © 2010 National Instruments 17 of 85

http://zone.ni.com/reference/en-XX/help/370622H-01/
http://zone.ni.com/reference/en-XX/help/370622H-01/TOC5.htm
http://zone.ni.com/reference/en-XX/help/370622H-01/TOC5.htm
http://zone.ni.com/reference/en-XX/help/370622H-01/TOC9.htm
http://zone.ni.com/reference/en-XX/help/370622H-01/lvrtconcepts/exploring_communication_methods/
http://zone.ni.com/reference/en-XX/help/370622H-01/lvrtconcepts/exploring_communication_methods/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/veristand_glossary/#execution_host
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/veristand_glossary/#host_computer

Properties
Hierarchy
Pages
Device Type

aprwd

After you have a clear idea of the channels, properties, hierarchy, pages, and type of custom
device, you're ready to start implementation. In the following discussion, we'll refer to a
hypothetical 3rd party analog to digital (A/D) converter, the AES-201. A hypothetical device was
chosen to simplify this discussion. If you prefer to follow along with an actual device, please
refer to NI DeveloperZone Tutorial: Building Custom Devices for NI VeriStand 2010.

Figure: A Hypothetical Digitizer called the AES-201

The AES-201 has (8) 32-bit analog input channels (Al). The device can digitize on 1V or
+500mV. The card has a single software trigger line. Each channel has a software enable that
is ON by default, and a 6Hz low pass filter that is OFF by default. A call to the hardware API
makes a single A/D conversion on the specified channel and returns raw data. The range of the
device cannot be changed after the device has been initialized.

Channels are the built-in mechanism used to exchange data between the custom device and
the rest of the NI VeriStand system. All channels are 64-bit floating point numbers; there is no
built-in mechanism for other channel data types. There are three common use cases for
planning a custom device channel.

1. Data generated by the custom device after it's deployed that may be required by other
parts of the NI VeriStand system.

2. Data originating elsewhere in the NI VeriStand system that may be consumed by the
custom device after it's deployed.

3. Dynamic properties that may change after the device is deployed can be implemented in
channels.

@ Notice the emphasis on “may”. Custom devices should be designed with a generic use-
case in mind. Just because your customer doesn’t use all channels and settings of the
hardware doesn’'t mean you shouldn’t expose everything to the operator.

Given these use cases, the AES-201 custom device should have one channel each for
ADDataFromCh<1..8>. The digitized data is going to change while the device is running. The
operator may need that data to be available to the rest of the NI VeriStand system. For
example, operators often map data from hardware to simulation model inputs.

Custom Device Developer's Guide © 2010 National Instruments 18 of 85

http://zone.ni.com/devzone/cda/tut/p/id/9348

The operator may need the ability to map the AES-201 software trigger to another channel in
the system explorer (a calculated channel for instance). So the developer should create a
channel for sWTrig. The operator may need the ability to disable a channel or toggle the input
filter or the AES-201 while the device is running. The developer should plan an additional 16
channels: one each for FilterEnCh<1..8>and ADEnCh<1..8>.

5

NI VeriStand channels are always LabVIEW DBLs. It may be easier to flatten data to
DBL than it is to implement a background communication loop that passes native data
types to the rest of the system. While the AES-201’s LabVIEW API calls for Boolean
data to enable the channel or filter, you can still use a DBL channel with the assumption
that 0 = Falseand !0 = True.

Channels are created with NI VeriStand Custom Device API » Configuration » Add Custom
Device Channel. The type of channel is either Input or Output. Channel type is with respect to

the custom device. If the custom device passes data to the rest of the NI VeriStand system, it
requires an output channel. If the custom device gets data from the rest of the system, it
requires an input channel. For example, the AES-201 may have 8 output channels
(ADDataFromCh<1..8>) and 17 input channels (ADEnCh<1..8>, FilterEnCh<1..8> and
SWTrig).

Once the custom device is loaded into NI VeriStand, the operator can map each input channel
to a single data source. Similarly, the operator can map each output channel to an arbitrary
number of sinks. For example, you can map ADDataFromCh1l to several simulation model
inputs, but SWTrig may be mapped to a user channel or model output, but not both.

Custom Device Developer's Guide © 2010 National Instruments 19 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/

NI VeriStand — Add Custom Device Channel VI
Owning Palette: Configuration

Adds a channel to the device or device subsection specified by Parrent Ref in. If the Channel Name you specify
already exists, the VI overwrites the existing channel settings without affecting any custom properties.

nghllght? (F) 1

GUID (Default Channel)
Parent Ref in ::E%‘ Parent Ref out
Channel Name 1 Fre Channel Ref
Channel = TE

E=grror out

error in (no error)
Property names
PrODeI’tY Values ___

Highlight? makes the item active in System Explorer.
GUID (Default Channel) the GUID of a custom channel defined in the custom device XML file.
Parent Ref in is the NI VeriStand reference to the parent section for the new channel.
Channel Name is the name of the new channel. The name is applied to the channel when the VI runs. If
the operator changes the name of the channel in the System Explorer, the changed name persists.
Channel defines the type, units, and default value of the channel. It also toggles Faultable and Scalable
properties on the channel.
==.¥ error in describes error conditions that occur before this node runs. This input provides standard error in
functionality.
abcd Property names is an string array of arbitrary property names associated with the channel.
'_ Property Values is a variant array that cooresponds one-to-one with the property names.
Parent Ref out is a duplicate of the Parent Ref in.
Channel Ref provides the NI VeriStand reference to the new channel within the custom device.
[»=2%]| error out contains error information. This output provides standard error out functionality.

The Add Custom Device Channel VI may be called from any VI that runs on the host computer.
There are several other Vis in the NI VeriStand Custom Device LabVIEW palette that operate
on custom device channels. The behavior of the VI is what you'd expect given the name of the
VI.

Configuration » Get Custom Device Channel Data VI

Configuration » Rename Custom Device Item VI

Configuration » Remove Custom Device ltem VI

Channel Properties » Set Custom Device Channel Default Value VI
Channel Properties » Set Custom Device Channel Faultability VI
Channel Properties » Set Custom Device Channel Scalability VI
Channel Properties » Set Custom Device Channel Type VI
Channel Properties » Set Custom Device Channel Units VI

Driver Functions » Get Custom Device Channel List VI

I O B

O

In addition to these channel-specific VIs, any VI from the Item Properties palette may be used
with a custom device channel.

Properties

Properties are used within the custom device to communicate state information. Property
names are case-sensitive strings. Unlike channels, property values may be any standard
LabVIEW data type. Properties are the recommended way to transfer configuration and state

Custom Device Developer's Guide © 2010 National Instruments 20 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_out/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_custom_device_channel_data_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_rename_custom_device_item_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_remove_custom_device_item_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_channel_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_channel_default_value_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_channel_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_channel_faultability_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_channel_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_channel_scalability_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_channel_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_channel_type_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_channel_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_channel_units_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_driver_functions_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_custom_device_channel_list_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/

information from the configuration to the engine on a one-time basis. The transfer occurs when
the system definition is deployed to the execution host.

After the system definition is deployed, the engine may still read and write properties on the
execution host, but it may not exchange properties with the host computer using the property
Vis.

The range setting on the AES-201 is best implemented as a custom device property because
the range cannot be changed after the card has been initialized. The configuration routine on
the host computer can set the Range property of the card based on operator input. When the
operator deploys the system definition, the engine can then read the Range property. The
engine can then make the appropriate call to the hardware API to set the range.

After the AES-201 has been started, the range cannot be changed. If the operator wants to
change the range setting, he must launch System Explorer, reconfigure the custom device, and
redeploy the system definition. The engine may still read or write the Range property, but the
change is not reflected in System Explorer.

You may decide to implement the filter setting as a property. The operator would enable or
disable the filter in System Explorer by toggling a check-box on each channel’s page. On one
hand, the device would require 8 fewer channels. On the other hand, the operator could no
longer toggle the input filter while the custom device was running. To illustrate several aspects
of custom device development, we will implement the filter setting as a property.

In this small example, we have eluded to a design decision often faced by custom device
developers. As the number of use-cases and flexibility of a custom device increases, so does
the complexity of planning and implementing the device. The tradeoff is a more robust device
that requires less customization by the operator.

NI VeriStand — Set Item Property VI
Owning Palette: Item Properties VIs

Sets a Property Name and Value for an item. If the Property Name you specify already exists, NI VeriStand
overwrites the property.

Item Ref in Vi Item Ref out
Property Name = i ITEM
value - EELE error out
error in (no error) S Replaced

Item Ref In is the NI VeriStand reference to the item destined for the property.

Property Name is an arbitrary case-sensitive name for the property.

Value corresponds to the value of the property. This is a polymorphic VI and the data type of the value input
cooresponds with the instance.

error in describes error conditions that occur before this node runs. This input provides standard error in
functionality.

Item Ref out is a duplicate of the Item Ref in.

error out contains error information. This output provides standard error out functionality.
Replaced indicates if the property was overwriten by the new value.

The Set Item Property VI may be called from any VI in the custom device. Properties can be
applied to any channel or section. In addition to the Set Item Property VI, properties can be set

Custom Device Developer's Guide © 2010 National Instruments 21 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_out/

when a channel or section is created by using the Property Names and Property Values
terminals.

A property must be read from the item to which it was set. For example, if you set the

Filter Enabled property onthe ADDataFromChl channel, you cannot read the value of the
Filter Enabled property directly from the parent section or any reference other than
ADDataFromChl. Properties do not inherit.

NI VeriStand — Get Item Property VI
Owning Palette: Item Properties VIs

Returns the Value of a specific item Property Name. If the Property Name does not exist for the specified item,
Value returns Default Value.

Item Refin COEY Item Ref out
Property Name T iTEM Yalue

Default Yalug - EREE o error out
error in (no error) Found?

Item Ref in is the NI VeriStand reference to query for the property.

Property Name is an arbitrary case-sensitive name for the property.

Default Value is returned by the Value terminal if the property is not found.

»==%]| errorin describes error conditions that occur before this node runs. This input provides standard error in
functionality.

Item Ref out is a duplicate of Item Ref in.

value is the value of the property. This is a polymorphic VI and the data type of the Default Value and

Value terminals coorespond with the instance.

[¥==71| error out contains error information. This output provides standard error out functionality.

Found indicates if Property Name was found on Iltem Ref in (true) or if the default value was returned

(false).

It's good programming practice to always use the Found terminal of the Get Item Property VI to
check that the intended property name was found on the item.

NI VeriStand — Remove Item Property VI
Owning Palette: Item Properties VIs

Removes the Property Name from an item.

Item Ref in QAICOEY Item Ref out
property Name ~A e Removed
error in {no error) === &serror out

[ued ¥ Item Ref in is the NI VeriStand reference to the item.
[abe} Property Name is an arbitrary case-sensitive name for the property.

pEat error in describes error conditions that occur before this node runs. This input provides standard error in
functionality.
Item Ref out is a duplicate of ltem Ref in.

Removed indicates if the property was found and removed successfully.
[»=2T]| error out contains error information. This output provides standard error out functionality.

Custom Device Developer's Guide © 2010 National Instruments 22 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_out/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_out/

The Get Item Property and Remove Item Property VIs may be called from any VI in the custom
device. There are several other Vls in the NI VeriStand Custom Device LabVIEW palette that
operate on custom device properties. The behavior of the VI is what you’d expect from the
name of the VI.

ltem Properties » Get Iltem Description

ltem Properties » Get Iltem GUID

ltem Properties » Get Property Names List

ltem Properties » Set ltem Description

ltem Properties » Set Item GUID

Device Properties » Get Custom Device Decimation
Device Properties » Get Custom Device Driver
Device Properties » Get Custom Device Version
Device Properties » Set Custom Device Decimation
Device Properties » Set Custom Device Driver
Device Properties » Set Custom Device Version
Device Properties » Specify Custom Device Execution Mode

N e I I

You can set decimation for any type of custom device. However, decimation is handled
differently for inline and asynchronous devices. We’'ll discuss the difference between these
devices later in the document.

An inline custom device is not called if its decimation indicates not to. For example, when you
decimate an inline custom device by 4, the PCL calls the custom device at every fourth iteration.
It does not mean the custom device has four times as long to execute. The inline custom
device must execute in short enough time for the entire PCL to complete its iteration including
the time to execute the inline custom device. Asynchronous devices have their channel FIFOs
read on the N'th iteration of the PCL, where N is the decimation rate of the asynchronous
device.

This information will make more sense after you understand the difference between inline and
asynchronous custom devices.

Hierarchy

NI VeriStand's System Explorer allows each custom device to present a hierarchal user
configuration interface. A hierarchal structure is not required, but it's a convenient way for the
developer to organize and present the device logically to the operator.

Custom Device Developer's Guide © 2010 National Instruments 23 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_item_description_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_item_guid_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_property_names_list_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_description_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_guid_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_custom_device_decimation_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_custom_device_driver_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_custom_device_version_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_decimation_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_driver_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_version_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_specify_custom_device_execution_mode_vi/

The Pickering 40-295 device that
ships with NI VeriStand has a simple
hierarchy. This custom device
hierarchy begins with the Pickering
40-295 custom device. This is the
top-level item in this custom device’s
hierarchy.

Within the next echelon are sections
for Desired Values and Actual
Values. Within each section are the
individual channels. If you're familiar
with this 3 party hardware, the
hierarchy is an intuitive configuration
interface for the Pickering 40-295
resistive module.

There are an arbitrary number of
possible hierarchies for most custom
devices.

= Targets

= e Sinewave Delay

=4 Controller Top-level item in
#-32 System Channels . .
T- Hardware the P|Cker|ng
St SFimqu§ custom device.
+- i} Simulation Models
+g Alarms

+-(Q) Procedures

i'fﬂ Custom Devices

= @ Pickering 40-295

=+ Desired Values

| Desired Resistance 1
Desired Resistance 2
Desired Resistance 3
Desired Resistance 4
Desired Resistance 5
Desired Resistance 6
Desired Resistance 7
Desired Resistance 8
Desired Resistance 9
Desired Resistance 10
-y Actual Values

- = Actual Resistance 1
- = Actual Resistance 2
- = Actual Resistance 3
- = Actual Resistance 4
- = Actual Resistance 5
- = Actual Resistance 6
- = Actual Resistance 7
- = Actual Resistance 8
- = Actual Resistance 9
- = #Actual Resistance 10
- = Board Status

+-@f User Channels

+- fy Calculated Channels

Ly XNET Databases

+- 25 Aliases

-3 System Mappings
~gly Data Sharing Network
83 System Initialization

Figure: Hierarchy of the Pickering 40-295 Custom
Device

Within the hierarchy, there are two types of objects: sections and channels. We’ve already
discussed custom device channels. Sections provide a logical way to group items in the
hierarchy. The default section glyph (icon) is a folder, as shown in the Pickering 40-295 custom
device. The developer can change the glyph by modifying the custom device XML. A collection
of glyphs that install with NI VeriStand 2010 is found in <Application Data>\System
Explorer\Glyphs.

All items in a custom device's configuration tree are either channels or sections, regardless of
their glyph. You cannot create additional levels of custom device hierarchy from channels. You
cannot map sections to other items in NI VeriStand. You cannot exchange data through
sections during run-time as you can with channels.

Sections are created with NI VeriStand Custom Device AP| » Custom Device APl VIs »
Configuration VIs » NI VeriStand - Add Custom Device Section.

Custom Device Developer's Guide © 2010 National Instruments 24 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/TOC12.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_section_vi/

NI VeriStand — Add Custom Device Section VI
Owning Palette: Configuration

Adds a section with the name Section Name to the device specified by Parent Ref in. If the Section Name you

specify already exists for that device, this VI updates only the GUID of that section without affecting any properties or
any child items.

nghhght? (F)

GUID (Default Section)

Parent Ref in COEV} Parent Ref out
Section Name ~ t:"‘ Section Ptr

error in (no error) == ; B=error out
Property names

Property Values

Highlight? makes the item active in System Explorer.

[abc® GUID (Default Section) specifies the GUID of a custom page in the custom device XML file.

[uedl Parent Ref in is the NI VeriStand reference to the parent for the new section.

[abe¥ Section Name is the name of the new section. The name is applied to the channel when the VI runs. If the
operator changes the name of the section in the System Explorer, the changed name persists.

| ==:¥ error in describes error conditions that occur before this node runs. This input provides standard error in
functionality.

abc» Property names is an string array of arbitrary property names assigned to the section.
L Property Values is a variant array that cooresponds one-to-one with the property names.
Parent Ref out is a duplicate of the Parent Ref in.
Section Ptr provides the NI VeriStand reference to the new section.
{»==%]| error out contains error information. This output provides standard error out functionality.

The Add Custom Device Section VI may be called from any VI that runs on the host computer.
You build-up the custom device hierarchy by using the Parent Reference terminal and the
Section Pointer terminal. Parent Reference is the level of the hierarchy that will contain the
new section. Section Pointer is the reference to the new section, one level deeper in the
custom device hierarchy than the Parent Reference. Now we’ll examine several hierarchies for
the AES-201 and discuss the advantages and disadvantages of each.

Custom Device Developer's Guide © 2010 National Instruments 25 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_out/

| --8 Sinewave Delay
;—"’\:i Targets
1) Controller
1?--:? System Channels
+- Hardware
+1v’~ Stimulus
+ Simulation Models
+g Alarms
+-(Q) Procedures
-m Custom Devices
=+ |Flat Hierarchy

- = SMBTrig
- = #ADDataFromCh1

Device Tkem Ref in

errar in (no errar)
S b b

i

Cuskom KML

!

A

TE+

_ 2010

Device Item Ref out

error aut
5

- = ADDataFromCh2
- = ADDataFromCh3
- = ADDataFromCh4
- = ADDataFromChs
- = ADDataFromChé
- = ADDataFromCh?
- = ADDataFromChg
- = ADENCh1
- = ADENCh2
- = ADENCh3
- = ADENCh4
- = ADENChS
- = ADENChE
- = ADENCh7
- = ADENCh3
+-@f User Channels
+- f Calculated Channels
Ly ¥NET Databases
- A3 Aliases
x System Mappings
1y Data Sharing Network
-3 System Initialization

Goer-

Type

[t Qutput |
Units
Default Yalue
o

Faultable

(Scalable

Figure: Flat Custom Device Hierarchy and Corresponding Initialization VI

The figure above is an example of a flat or single-level hierarchy for the AES-201. All of the
channels are under the main section in the configuration tree. While it's easy to determine how
many channels are available, the type of channel is unknown and the function of the channel is
implied by the channel name. A flat hierarchy is suited for devices with a small number of
channels that all perform the same function. A flat hierarchy is less suited for large channel
count devices, or when channels perform different functions. For example, a custom device for
a multifunction data acquisition board would be difficult to present in a flat hierarchy.

Notice that the same Device Item Ref in is used to create the SWTrig, ADEnCh<1..8>, and
ADDataFromCh<1..8> channels. As aresult, all of these channels appear at the same
echelon of the hierarchy. In the code above, you should be able to identify the input and output
channels. sWTrig and ADEnCh<1..8> are input channels because the custom device sinks
data from them. ADDataFromCh<1. .8> are output channels because they source data to the
rest of NI VeriStand. We'll be showing clusters as icons in much of the following material.

From an operator's perspective, custom device inputs and outputs may seem backwards.
Hardware inputs correspond to custom device outputs. The operator is not required to interact
with the custom device source code, only System Explorer. If the developer did a good job,
channel direction should make sense to the operator.

Custom Device Developer's Guide © 2010 National Instruments 26 of 85

:a Sinewave Delay 7 Bv? o8 L o
= 9\:' Targets T T

ZHif) Controller | bevice Ttem Ref in
-32 System Channels |

Device Item Ref out

Hardware Enables Hardware Inputs SMETrig

-B= Hardware _ =3 N =]
e StimUILS errar in {no error) errer ot
- i Simulation Models — f— Section Ptr > ——

Section Pir >
@ Alarms =a-a

-@ Procedures
= Custom Devices
=+ Mested Hierarchy

|- = SMBTrig
{5 Hardware Enables
~ = ADENCh1
= ADEnChZ [
- ADEnCh3
- ADEnCh4
= ADEnChS
- ADENChé
- ADENCh7
| L= aDEnchs
=4 Hardware Inputs
- = ADDataFromCh1
~ = ADDataFromCh2
~ = ADDataFromCh3
- = ADDataFromCh4
- = ADDataFromChs
- = ADDataFromChé
- = ADDataFromCh?
- = ADDataFromCh3
- User Channels
- A Calculated Channels

-—% XNET Databases
- 23 Aliases

=3 System Mappings

1y Data Sharing Netwark
-3 System Initialization

Figure: Nested Custom Device Hierarchy and Corresponding Initialization VI

The figure above is an example of a nested hierarchy for the AES-201. The channels have
been organized into Hardware Enables and Hardware Inputs sections. This device is
well-organized and fairy intuitive. Note how the Section Ptr outputs are used to create
channels beneath the corresponding section in the Initialization VI. Also note how the parent
reference is used to create the trigger channel at the same level as the two sections in the
custom device hierarchy.

You can create an arbitrarily complex hierarchy. You should plan the custom device hierarchy
to use the minimum number of sections that make the hierarchy well-organized, intuitive, and
user friendly.

Pages are VIs that System Explorer displays in the configuration pane. The configuration pane
is a Subpanel. Subpanels are LabVIEW front panel containers that allow a VI to display the
front panel of another VI. See LabVIEW 2010 Help » Fundamentals » Building the Front Panel
» Concepts » Front Panel Controls and Indicators » Subpanel Controls for more information.

An item'’s page gets displayed in the Subpanel when the operator clicks on the item in system
Explorer’s configuration tree. Pages run on the host computer; they define the appearance and
configuration experience of the custom device. The Custom Device Template Tool creates two
configuration VIs by default: Initialization and Main. The Initialization VI is a simple VI (it doesn’t
get populated into the Subpanel), the Main VI is a page.

When you click on the top-most custom device item in the configuration tree, <Custom Device
Name>Main Page.vi goes into System Explorer’s configuration pane’s Subpanel and its
block diagram executes.

Custom Device Developer's Guide © 2010 National Instruments 27 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC10.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC14.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC15.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/fp_controls_indicators/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/fp_controls_indicators/#Subpanel_Controls

= =) % 1/ System Explorer - Sinewave Delay. nivssdf =
T_ i He Edk Took telp

| = s I oy

BoH 3 X & E A
Custom Device e Settngs

Name.
Nested Hierarchy

Description

The Main
Page

Clicking the top-level
item in the
configuration tree...

...runs the main
page and puts itin
the configuration
pane’s Subpanel.

Figure: Main VI Populated into System Explorer when the Operator Clicks the Top-level
Custom Device Item in the Configuration Tree

If the developer did not assign a custom page to a new section or channel, the default section or
channel page is shown when the operator clicks on the item in the configuration tree.

1 System Explorer - Sinowave Delay.nivss df (=]~ 3 [\ System Explorer - Sinewave Delay. nivssdf
Eo £ Lo tep Ho £ Toos tep

ol W 3 X L3 H 3 X = A
| ——— | Achannelis
highlighted.
A section is
highlighted.
Figure: The Default Section Page Figure: The Default Channel Page

The default pages allow the operator to set a description for the section or page. NI VeriStand
retains this data in the System Definition (nivssdf) file. You cannot individually modify the block
diagram or font panel of the default pages. The Custom Device Template Tool allows the
developer to specify extra pages. Extra pages can be used to override the default page for an
item. When the developer creates an extra page and associates it with a section or channel, he
overrides the default page for that item. You can individually modify the front panel and block
diagram of extra pages. The block diagram executes when the operator clicks on the item in
the configuration tree.

Custom Device Developer's Guide © 2010 National Instruments 28 of 85

Before we discuss adding extra pages in detail, we must cover a two rules for modifying custom
device pages.

[J You must not change the size of any page's front panel. The page's front panel is
loaded into a Subpanel in the configuration pane. If you change the size of the front
panel, it may not fit correctly into the Subpanel and may be unusable.

{1 You must not change the names or connector pane associations of any terminal
generated by the page template or Custom Device Template Tool. NI VeriStand uses
these objects to interface with the page. If they are changed, the custom device will not
work and will likely prevent the operator from deploying the system definition.

Extra pages provide a way to customize the appearance and/or behavior of any item in the
custom device's hierarchy. Extra pages override the default pages. You should plan an extra
page for each item in the custom device you wish to customize differently. For example, if you
want to customize the page for each ADDataFromCh channel, but you’ll customize all
ADDataFromCh channels the same (say by adding an extra button for the filter), you only need
one extra page. NI VeriStand stores state data for each individual item in the custom device
hierarchy in the nivssdf file.

The AES-201 may call for five extra pages. One page for each section, one page each for the
ADDataFromCh<1..8>and ADEnCh<1. .8> channels, and one page for the SWTrig channel.
Even if you don’t wind up using the extra pages, it's better to have extra pages that you don’t
need than to need extra pages that you don’t have.

NI VeriStand requires four things in order to override a default page with an extra page in the
custom device.

Page

Globally Unique IDentifier (GUID)
XML Declaration

Build Specification

PwbdE

Custom Device Developer's Guide © 2010 National Instruments 29 of 85

A properly formed page VI must {3 Custom Device Template Tool.lvlib:Custom Device Template Tool.vi Front Panel g@a
exist. If you plan properly, you'll be |[5e &t vew oroject perate Tods sindow tih

GUTHEL

able to specify all the extra pages (] @[un] [t popicstionFort_[~ 5[- e (€51 Q |
when you run the Custom Device Ta’get“oldev' % e v . - 1
Template Tool. An extra page is I.,j“emp = B AR
created for each element in the Extra ! @ !

Custom Device Project path

Page Names (No Extension)

co ntrol . ﬁmt;m DevicevName (]\Io Exl:emiol;n) ‘ %
The tool generates the page, GUID,)f-—ﬂﬂ‘-”—"“f-J-— HHHHAHH PR I I
g Asynchronous Custom Device Library path

page in the build specification. You'll o

find the extra page template in B AN NN N B
T

XML Declaration, and includes the
Open Project

Custom Device B""""!(m""") W sxuapagename‘s(mua@\ i r_._....._x____n.e"°5°“*-] ..
API.lvlib\Templates\Subpane || " &= w ' A]
g1 Gfo L : | o
1 Page VI\Page Template-Vit- source ‘ / source
iEmee e EEEEEE—
i i I i i i -
< I >

Figure: Extra Page Names Array

@ If you do not use the Custom Device Template Tool to create extra pages, you must
manually add and configure them.

Manually adding extra pages to a custom device after running the Custom Device Template
Tool is cumbersome. Avoid this issue by creating a few extra pages beyond what you think will
be necessary. Unused extra pages are not executed, but they do consume marginal space on
disk.

When you associate an extra page with a channel or section, you override the default page for
that item. This is done by specifying a GUID when the item is created, or by setting the item’s
GUID using NI VeriStand Custom Device API » Configuration » Item Properties » Set ltem
GUID.

i i 1D (Default Channel
Tempet I SUIDpsrc S NI VeriStand - Add Custom Device Section.vi SUip{oetaat la%: NI Weristand - Add Custom Device Channel.vi
NI VeriStand - Set Item GUID.vi ey fin [l +]
GUID SHLANG 2SEem. M Parent Ref in Parent Refin || +
oo | e

Refresh System Explorer Tree? (F)

Figure: NI VeriStand API to Set an Item’s GUID

The Custom Device Template Tool generates a GUID for each extra page in the Extra Page
Names (No Extension) control.

There is a GUID Generator VI in <vi.lib>\NI Veristand\Custom Device
Tools\Custom Device Template Tool\Custom Device Template
Tool.lvlib:GUID Generator.vi. Before you can run this VI by itself, you must change
the Custom Device Template Tool.lvlib\subVIs access scope to public, and set the

Custom Device Developer's Guide © 2010 National Instruments 30 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_guid_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_guid_vi/

VI's Execution Priority to Normal. There is a stand-alone GUID generator VI attached to
KnowledgeBase 571B71YP: Adding a Page to an NI VeriStand Custom Device's Configuration
Library after Running the Custom Device Template Tool. There are also a variety of free GUID
generators on-line.

The custom device API associates a channel or section with a GUID. The custom device XML

associates the GUID with the page VI. The page and its GUID must be declared in the custom

device XML <PAGES> section within a <PAGE> schema. If the developer planned for the extra

pages before running the Custom Device Template Tool, the tool makes the appropriate entries
in the custom device XML file for each extra page.

<Page>
<Name>
<eng>Extra Page 1</eng>
<loc>Extra Page 1</loc>
</Name>
<GUID>36481013-A447-6517-7D1C-FBB21CAE1E9F</GUID>
<Glyph>
<Type>To Application Data Dir</Type>
<Path>System Explorer\Glyphs\default fpga category.png</Path>
</Glyph>
<Item2Launch>
<Type>To Common Doc Dir</Type>
<Path>Custom Devices\Extra Page Demo\Demo Configuration.llb\Extra Page 1.vi</Path>
</Item2Launch>
</Page>

Custom Device XML Showing the Page Name, GUID, and VI

Extra pages are dynamically called VIs. Since they are not a part of the custom device’s VI
hierarchy, they must be explicitly included in the custom device's Build Specification. If the
developer planned for the required extra pages before running the Custom Device Template
Tool, the tool configures the build specifications to include the extra pages into the initialization
library.

If a page must be added to the custom device after the tool has been run, the developer must
edit the configuration Build Specification to include the extra page and all its dynamically called
dependencies (if any).

Custom Device Developer's Guide © 2010 National Instruments 31 0of 85

http://digital.ni.com/public.nsf/allkb/95970CF2E098065C862576DA00641440?OpenDocument
http://digital.ni.com/public.nsf/allkb/95970CF2E098065C862576DA00641440?OpenDocument

Type

ile deployed to the execution Custom Device Template Tool.lvlib:Custom Device Template Tool.vi Front Panel 25
While deployed to th t & &3
host, all custom devices run inside |[&k et tew project Operste ook Window telp !
the NI VeriStand Engine. The T e | = = = [l A [k
engine is the non-visible mechanism Targel:}[-‘oider i cefer i . H R E |
that controls the timing of the entire Iﬁe"‘p S PeeEem
system as well as communication ‘ HER. - Eus I NN
between the execution host and ! HH Suson Devee Profertpath
host computer. See NI VeriStand Custom Device Name (o Extension) . . 4
Help » Components of a Project » [s ; . S ‘ =!
Understanding the VeriStand piitentiod FOr R E S i [

N - .)| Asynchronous Custom Device Library path A
Engine for more information. RS SEm g =

SEEmmnE _ _]
The Custom Device Template Tool | =
generates a new LabVIEW Project || etorntosro) 58 1 2 O S A eroro |
.. . . status code i - . status code

containing one of five pre-built Vil — o , I

]
SOHIES) source

device frameworks. The framework
is determined by the Execution
Mode control.

I 1 1 | i i £

Figure: Execution Mode Control

The Execution Mode determines when the device will run with respect to the other operations
performed by the NI VeriStand Engine. There are five pre-built device frameworks. Three of
the frameworks are for custom devices; the other two are for custom timing and synchronization
devices.

Custom timing and synchronization devices are the same as regular custom devices, but they
can be configured as the hardware synchronization master to drive RTSIO. For more
information about the Real Time System Integration (RTSI) bus see KnowledgeBase
2R5FK53J: What is RTSI and How is it Configured? Custom timing and synchronization
devices are not covered in detail in this document. For more information about custom timing
and synchronization devices, see NI VeriStand Help » Configuring and Running a Project »
Configuring a System Definition File » Adding and Configuring Timing and Sync Devices. Multi-
chassis synchronization may also be accomplished using built-in features. See NI
DeveloperZone Tutorial: Creating a Distributed System With NI VeriStand 2010 for more
information.

Two of the regular custom devices run in-line with the Primary Control Loop (PCL), the other
runs in parallel with the PCL. A custom device is not limited to using just one type of framework.
Some developers have built both in-line and parallel engines for a single custom device and
allow the operator to select which mode to deploy.

Generally it's OK to alter the code within the framework depending on your needs. However
you must maintain the connector pane, controls, and indicators provided by the Custom Device
Template Tool or VI template. NI VeriStand uses these objects to interface with the custom
device. If they are changed, the custom device will not work and will likely cause errors.

Custom Device Developer's Guide © 2010 National Instruments 32 0of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC5.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/
http://digital.ni.com/public.nsf/allkb/A120195AAAA9222A86256C69007C8B27
http://digital.ni.com/public.nsf/allkb/A120195AAAA9222A86256C69007C8B27
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC6.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC7.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/add_configure_timing_sync/
http://zone.ni.com/devzone/cda/tut/p/id/11060
http://zone.ni.com/devzone/cda/tut/p/id/11060

The asynchronous custom device framework provides a simple, single-loop architecture. There
are sections for initialization and cleanup before and after the loop. The asynchronous template
provides a Timed Loop which may be exchanged for a While at the developer’s discretion.

The loop runs in parallel loop to the PCL. If proper real-time development practices are adhered
to, it is unlikely to block the PCL or slow it down. Essentially this means that the rest of the NI
VeriStand system will continue to execute as expected even if the asynchronous custom device
is latent or stalls.

The loop can be synchronized to the PCL's timing source, making it pseudo-synchronous. This
applies to asynchronous devices that use a Timed Loop, While Loops cannot be used for this
purpose. The benefit of an asynchronous custom device synchronized to the PCL is that it will
not cause the PCL to be late just because the custom device finishes late. Use NI VeriStand —
Set Loop Type to specify the asynchronous Timed Loop uses the device clock. NI VeriStand
tics the device clock for all Timed Loops that have Use Device Clock setto true.

The asynchronous device can also run at a different rate than the PCL. The rate may be
defined using any execution timing method available in LabVIEW, and may iterate faster than
the PCL. The rate can also be a decimation of the PCL rate specified by Custom Device AP| »
Configuration » Iltem Property » Device Properties » Set Custom Device Decimation VI.

The asynchronous template provides two RT FIFOs (Device Inputs FIFO and Device Outputs
FIFO) to exchange channel data with the rest of NI VeriStand. Since the asynchronous device
runs in parallel to the PCL and passes channel data via RT FIFOs, there is a minimum of one
cycle delay from when data leaves the PCL and when it enters the custom device and vice
versa. These FIFOs correspond exactly to those shown in NI VeriStand 2010 Help »
Components of a Project » Understanding the VeriStand Engine.

Primary Contral Loop :

‘ \ J4]
L} n
o o

™ T ™y 9 =

T Model Execution Loop(s) — =

ot / 8

[—

I
= 3
HY M L h o
Custom Device Loop(s) T
) o
M .)
Data Procassing Loop(s)
J
| ! !
FIFO FIFO FIID FIFO

() =)=) (=)

E-.Gﬂmmurﬂmlmn LMP‘S .“...u...“...:] E‘Lﬂw Sﬁﬂ&d ([la] LO‘}‘:'B [P ————
F'IFP

Figure: The NI VeriStand Engine

Custom Device Developer's Guide © 2010 National Instruments 33 0f 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_loop_type_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_loop_type_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_decimation_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC5.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/

The asynchronous device is not guaranteed to execute at the same time with respect to the
other components of the system. For example, the first iteration may execute before the PCL
processes alarms; the second and third iterations after, the fourth before et cetera.

The input controls are specially named controls that the system will use to provide the device
loop with data. The controls are not required for the device loop to run. For instance, if the
device doesn't produce any output data, then you don't need the Device Outputs FIFO control.
If you do need these controls, they must have these exact names to be functional.

The optional status notifier element is used to notify the RT engine of the last state of the
custom device, and to indicate the device has completed execution. If this control is not used, a
default No Error value is returned to the system when the device finishes execution. This error
state is not checked until the system shuts down. Use an output channel to send more
immediate status values to the system.

The asynchronous framework includes Vs from the NI VeriStand Asynchronous Device
Properties VIs palette.

Custom Device Developer's Guide © 2010 National Instruments 34 of 85

Use this template as a starting point For creating a custom device code module. The input controls shown here are specially named controls that the system will use to provide the device loop with data. The controls
lare not required for the device loop to run. For instance, if the device doesn't produce any output data, then you don't need the Device Outputs FIFO contral, If you do use these controls, however, they need to
lhave these exact names to be functional, Use the RT Debug String Y1 to make the status of a custom device public on an RT Target.

[Use the Device Clock timing

lsource if you want the IWarning: Configuring a timing source From the Timed Loop Configuration Dialog instead of wiring in a timing source may prevent the Timed Loop from synchronizing with the YeriStand Engine. We recommend

lexecution of the timed loop |always wiring an external timing source. FFas <P
Ischeduled by the primary ; MFalse]
lcontrol loop in the system.
By default the 1kHz clock is
lused.
(D) ms
Device Clock [ZE L | | N |] CIZTE s
Processor d T["Mormal”, Default b
Period [100}—p dt =
T IThe Device Input
5 ‘Wakeup Reason b}— land Output :
- < FIFOs are closed | E
The Device Reference the Ta[Default_vP lby the system. .
reference to the custom Produce Output Data IThis is an
device. Use it to read T lindication that
lconfiguration properties, lthe system is
lget a list of channels, etc. >Dev.Outputs:> —f1) —{B-8-= — ' shutt};\g down or
=7 iH=t :
i i & o Irestarting, and
Device Reference (V64K o that this device
e - 5 e q B lloop should shut
RT FIFO Write dowin as well.
Device Outputs FIFO [CB_¥ [There is no need
[Produce and send back o close the
IThe array of outputs sent to the system on the Default loutput data to the FIFOs here.
[Device Outputs FIFO corresponds one-to-one to @v o . lsystem.
lthe Outputs array specfied by Get Channel List.vi. Read input
|data sent from
@ (FY {E lthe system.
L] RT FIFO Read Status Notifier
Device Inputs FIFO [& [B WerooooooeoSouom
p = =Dev.Inputs> i'mpll { oR
IThe array of inputs received from the system on) BT I
lthe Device Inputs FIFO corresponds one-to-one ko i
lthe Outputs array specfied by Get Channel List. vi. & P [status]- Eﬂ Use the optional Status Notifier ta publish the final
lerror state of your device. Publish this state
m regardless of error. If a Status Notifier control is
lpresent in the driver Y1, the system uses this as an
lindication that the device has shut down. Otherwise

lthe system provides default status notification for
lthe device.

INormal errors, shut as the error when the system
Ishuts down a FIFO to signal the device to close,
should not be reported. The Report Final Error
[Status ¥I handles this case automatically.

Figure: Asynchronous Custom Device Framework

Get Loop Type - Returns the type of loop that an asynchronous custom device uses. The type can be either While Loop or Timed
Loop. Ifit's a Timed Loop, this VI also returns whether the loop uses the device clock.

Get Asynchronous Driver VI Timed Loop Name - Returns the name of the Timed Loop that a custom device uses. The VeriStand
Engine synchronizes the start of this Timed Loop with the other system Timed Loops. Use the name to ensure synchronization
occurs successfully.

Get Timed Loop Priority - Returns the priority (Low, Medium, or High) of an asynchronous custom device Timed Loop. To convert
this enumerated value to a numeric value that the Timed Loop input terminal accepts, use the Convert Timed Loop Priority Property
to Number VI.

Convert Timed Loop Priority to Number - Converts a priority value (Low, Medium, High) for a custom device Timed Loop into a
numeric value that the Timed Loop Input Node accepts. To set the priority, use the Set Timed Loop Priority VI.

Custom Device Developer's Guide © 2010 National Instruments 35 0f 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_loop_type_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_asynchronous_driver_vi_timed_loop_name_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_timed_loop_priority_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_convert_timed_loop_priority_to_number_vi/

Whenever a timing source is specified for a Timed Loop, the dt terminal is in tics of the
timing source. The asynchronous template has a default period of 100. The default
timing source is a 1KHz clock, so the default configuration iterates at 10Hz. If you set
Use Device Clock = true inthe Set Loop Type VI, the Timed Loop will iterate every
once every 100 iterations of the PCL.

See LabVIEW 2010 Help » VI and Function Reference » Programming VIs and Functions »
Structures » Timed Loop for more information about the Timed Loop and its terminals.

The inline hardware interface template is similar to state machine architecture. Some
developers will recognize it as an action-engine. See NI Discussion Forums » LabVIEW »
Community Nugget 4/08/2007 Action Engines for a discussion on action engines. The PCL
specifies the case to execute. An uninitialized Feedback Node is used for iterative data
transfer. There are five cases defined by the Operation enumerated control.

Initialize

Start

Read Data from Hardware
Write Data to Hardware
Close

arwbdE

This custom device runs in-line with the PCL, which calls each case at a specific time with
respect to the other components in the NI VeriStand engine. The PCL will not proceed until the
custom device case has completed.

The Initialize case executes before the PCL starts. In this case, you can read the device
configuration information from properties using the reference to the device. Initialize data and
buffers used internally in the device. The framework compiles the list of Data References for
the custom device Inputs and Outputs in advance using Custom Device API » Driver Functions
» Get Custom Device Channel List and Custom Device API.lvlib » Templates » RT
Driver VIs» Inline » Inline Driver Utilities » Channel Data References »
Get Channel Data Reference.vi.

Custom Device Developer's Guide © 2010 National Instruments 36 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/con_select_timed_struct_timing/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_loop_type_vi/
http://zone.ni.com/reference/en-XX/help/371361G-01/
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC99.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC100.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC112.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/timed_loop/
http://forums.ni.com/
http://forums.ni.com/t5/LabVIEW/bd-p/170
http://forums.ni.com/t5/LabVIEW/Community-Nugget-4-08-2007-Action-Engines/m-p/503801?requireLogin=False
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/feedback_node/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_driver_functions_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_custom_device_channel_list_vi/

i

f["Initialize", Default v f

Read the device configuration information from the data storage using the reference to the device. Initialize any state
data and buffers used internally in the device.

(Compile the list of Data References for the custom device Inputs and Outputs in advance using Get Channel List and
Get Channel Data Reference. Allocate any necessary data buffers and configure any state data.

You can't read or write channel values in this case.

¢ Qutput v

Device Reference in

COE [COEY]
GET 0} e @
il g I 1 4 W E code} Error Code
- j

Operation

Figure: Initialize State of the Inline Hardware Interface Framework

Since the PCL hasn’t started yet, you can't read or write channel values in the Initialize case.

The Start case executes after Initialization and before the PCL starts running. There’s no
difference between what code you can place in the Initialize and Start states. Since the PCL
hasn’t started yet, you can't read or write channel values in the Start case.

The Read Data from HW case executes at the beginning of the PCL, before other components
(such as Stimulus, Faults, Alarms, Procedures, et cetera) execute. For a detailed timing
diagram, see the Outline of PCL Iteration section. After processing system mappings, the data
obtained in this case is available to the other components of the system for the remainder of the
PCL iteration.

1
[["Read Data from HW"]

Send device output data read from HW to the system using Data References for the output channels. Don't ever call
Get or Set Channel Value by Data Reference outside the Inline Driver V1. This could cause system instability or errors,

Read Hardware Channels
00000000000 00000000000000

Device Reference in N
[ue M i3] [CoEY
a— Y
e £ code »132]|Error Code
i
Operation

0000000000000 000000000000

Figure: Read Data from HW State of the Inline Hardware Interface Framework

Custom Device Developer's Guide © 2010 National Instruments 37 of 85

The template contains a Flat Sequence frame named Read Hardware Channels. You can
replace the code inside the frame with the API calls necessary to obtain data from a hardware
API.

Do not call Get or Set Channel Value by Data Reference outside the inline driver VI.
Doing so could cause system instability or errors.

The Write Data to HW case executes at the end of the PCL, after the other components (such
as Stimulus, Faults, Alarms, Procedures, et cetera) have executed.

E—3
fa["Write Data to HW" v

Read input data from the system using Data References and write it to the hardware channels. Don't ever call
Get or Set Channel Value by Data Reference outside the Inline Driver V1. This could cause system instability or
errors.

‘Write Input Data to Hardware Channels
O0ooo0oo0o0oo0o0o0o00

Read Input Yalues from System

= | Input Refs
Device Error

Device Reference in

I

- BEsz][Error Code

Operation

000000000000

Figure: Write Data to HW State of the Inline Hardware Interface Framework

The case contains a Flat Sequence frame named Write Input Data to Hardware Channels. You
can replace the code inside the frame with the API calls necessary to send data to a hardware
device.

The Close case executes after the PCL has finished executing. It's good practice to close
references and release resources in this state. Since the PCL has terminated, you cannot read
or write channel values in this case.

The Inline Model Interface custom device template is state machine/action engine architecture.
An uninitialized Feedback Node is used for iterative data transfer. There are four cases defined
by the Operation enumerated control.

1. Initialize — Same as Inline HW Interface
2. Start — Same as Inline HW Interface

Custom Device Developer's Guide © 2010 National Instruments 38 of 85

3. Execute Model
4. Close — Same as Inline HW Interface

This custom device is run in-line with the PCL, which calls each case at a specific time with
respect to the other components in the system. The PCL will not proceed until the custom

device case has returned.

The execute model case is called in the middle of the PCL. This is the one state of this device
that executes during the PCL. This state reads input data, performs a calculation, and then
writes output data to NI VeriStand. Using the Inline Model Interface mode enables you to
process data acquired from hardware inputs and send the processed values to hardware

outputs with no latency.

=3
#

T["Execute Model” v}

Read inputs from system. Execute the model calculation. Write outputs back to the system. Don't ever call Get or Set Channel
Value by Data Reference outside the Inline Driver V1. This could cause system instability or errors.

Output Refs

L 7\.‘&\?. Do Model Calculation

[u] [u] [u] [u] [u] o [u] [u] oc
HE

Input Refs ==

Read Inputs from System

J Write Output Values to System

Device Reference in N

et 1] [CDEY] ® DE!
r e 4::7 -
0] = 5 ry = ool A b jofoy [code]
[| i
000000000000000000

Figure: Execute Model State of the Inline Model Interface Framework

B2 |Error Code

Do not call Get or Set Channel Value by Data Reference outside the inline driver VI.

Doing so could cause system instability or errors.

Custom Device Developer's Guide © 2010 National Instruments

39 of 85

Device Type Basic Framework Timing Pros Caveats Use Cases
Architecture Data
Interface
Asynchronous | Single Loop | Input and Synchronized w/ Unlikely to 1-cycle latency to Shared resources,
Output FIFO | PCL adversely affect get data to/from the | background
timing of other device due to RT processes, non-
Decimation of components inthe | FIFOs deterministic
PCL rate (FIFOs system hardware/
are read ever N'th protocols,
iteration of PCL) May run faster, system health
slower, or monitoring, logging,
Any user defined | decimation of PCL offline analysis
rate
Inline State Channel In-line with the Presents data to Can adversely Most hardware,
Hardware machine references PCL engine before other | affect the timing of | deterministic
Interface components the PCL operations, two-
Two steady- Decimation of the | execute phase operations
state cases PCL (device such as stimulus-
executes every Receive data from response
N’th iteration of engine after other
PCL, does not components have
have N-times as executed
long to finish)
Inline Model State Channel In-line with the Send data to Can adversely Low-latency
Interface machine references PCL engine with low affect the timing of | calculations such
latency the PCL as PID,
One steady- Decimation of the interpolation, etc.
state case PCL (device

executes every
N’th iteration of
PCL, does not
have N-times as
long to finish)

Custom Device Developer's Guide

© 2010 National Instruments

40 of 85

The order of operations in the Primary Control Loop varies with respect to the execution mode
of the controller. You can adjust this setting in System Explorer » Targets » Controller » Other
Settings » Execution Mode.

The Data Processing Loop (DPL) is responsible for executing Procedures, alarms, and
calculated channels. For more information about hardware timing in NI VeriStand see
KnowledgeBase 58BFIFAF: Hardware 1/O Latency Times in NI VeriStand.

(N-1) means “from the previous iteration”.

1. Get hardware inputs from Controller » Hardware » Chassis
¢ DAQ Digital Lines and Counters are read after Read From HW case of Inline
Hardware custom devices
Read asynchronous custom device FIFOs (N-1)
Run Read Data From HW case of Inline Hardware custom devices
e Scaling is applied after all hardware inputs have been acquired
Read models from Controller » Simulation Models
Read from DPL (N-1)
Process system mappings®
Run the Execute Model case of Inline Model custom devices
e All hardware inputs have been acquired and all channels have been scaled
before this case runs
8. Process system mappings®
9. Execute generators
10. Process system mappings®
11. Write to DPL
12. Write to Controller » Simulation Models
13. Write hardware outputs to Controller » Hardware » Chassis
14. Run the Write to Hardware case of Inline Hardware custom devices
15. Write to Asynchronous device FIFOs

wnN

Noos

! You can’t read data from a previous step until a “process system mappings” step has executed, even if
that step acquired the data you want. For example, you write an inline HW custom device, and inside the
read data from HW state of this custom device, you want to read the channel data from a DAQ card in the
configuration. The DAQ executes at step 1, your code executes at step 3. However, if you read the
channel for the DAQ in your code in step 3, you would get the data from the previous iteration (N-1)
because “process system mappings” hasn’t executed yet. This is the case for NIVS 2010, it will likely
change in the future.

Custom Device Developer's Guide © 2010 National Instruments 41 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/#Primary_Control
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/system_explorer/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/targets_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/#Data_Processing_Loop
http://digital.ni.com/public.nsf/allkb/9E9DCC2414B0692A8625770300765403
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/hardware_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/chassis_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/simulation_models_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/simulation_models_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/hardware_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/chassis_se/

Low latency mode executes models in-line.

1. Get hardware inputs from Controller » Hardware » Chassis
¢ DAQ Digital Lines and Counters are read after Read From HW case of Inline
Hardware custom devices
2. Read asynchronous custom device FIFOs (N-1)
3. Run the Read Data From HW case of Inline Hardware custom devices
e Scaling is applied after all hardware inputs have been acquired
4. Read from DPL (N-1)
5. Process system mappings®
6. Run the Execute Model case of Inline Model custom devices
e All hardware inputs have been acquired and all channels have been scaled
before this case runs
7. Process system mappings®
8. Execute generators
9. Process mappings®
10. Write to Controller » Simulation Models
11. Wait for models to finish
12. Read from Controller » Simulation Models
13. Process system mappings®
14. Write to DPL
15. Write hardware outputs to Controller » Hardware » Chassis
16. Run the Write to Hardware case of Inline Hardware custom devices
17. Write to Asynchronous device FIFOs

Based on the timing requirements of the custom device, plan the type of device before
executing the Custom Device Template Tool. The AES-201 API sinks and sources data during
steady-state operation; the custom device needs input and output channels. The operator
needs deterministic hardware data. The AES-201 should be implemented with the Inline
Hardware type of custom device.

Implement the Custom Device
You should thoroughly plan before you implement the custom device. We'll now implement the

custom device for the AES-201. Recall this is a hypothetical 3" party device. By inventing our
own device and API, we're able to focus on the custom device process and avoid the
programming tedium. If you’d like to walk through building an actual custom device, you can
follow NI DeveloperZone Tutorial: Building Custom Devices for NI VeriStand 2010.

Custom Device Developer's Guide © 2010 National Instruments 42 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/hardware_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/chassis_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/simulation_models_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/simulation_models_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/hardware_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/chassis_se/
http://zone.ni.com/devzone/cda/tut/p/id/9348

AES-201 Analog Input Specifications

Range: +1V or £500mV
Cannot be changed while digitizing
Return: 32-bit raw

Trigger: 1 software

SW Enable: Default on

Filter: 6Hz LPF default off

Figure: AES-201

Do we need a custom device?

Our customer requires 32-bits of resolution for their RT test system. This is the only PXI
digitizer that fulfills this requirement. After checking with Nl.com and the manufacturer, we
found no custom device exists for the AES-201, so we determine that a new custom device is
necessary.

What are the risks?

The AES-201 ships with a hardware driver that's compatible with LabVIEW Real-Time and a
LabVIEW API. We have a real-time desktop target that’s identical to our customer’s platform.
At our request, the customer has provided their model dll, so we can test and benchmark on a
system very similar to our customer’s system.

Implementation
Based on the AES-201, we create the following specifications.

e Eight output channels ADDataFromCh<1..8>

e Nine input channels ADEnCh<1..8>, SWTrig

e Nine properties: FilterEn<1l..8> and Range

o We will use a nested two-level hierarchy

e We plan to override the default channel page for ADDataFromCh<1. .8> but we'll use
the default page for everything else. We'll create a few extra pages just to be safe.

e To avoid FIFO latency, we’ll use the Hardware Inline custom device.

Open <vi.lib>\NI Veristand\Custom Device Tools\Custom Device Template
Tool\Custom Device Template Tool.vi. Configure the front panel to generate a
LabVIEW Project for the AES-201 custom device and then run the VI.

Custom Device Developer's Guide © 2010 National Instruments 43 of 85

The CUStom DeV|Ce Template TOOI }ﬂ Custom Device Template Tool.lvlib:Custom Device Template Tool.vi Front Panel E]@{

puts the new LabVIEW Project in @ |5 &® e ot operste Took window b
] i -Q) :] lication For]v‘ a [--37 |
sub folder inside the target folder Al L [z ’

(A). The name of the custom |
device (B) is also the name of the
sub folder. That is, you don’t have
to specify a sub folder for your
device because the tool makes one
for you. Select the type of custom é
device from the Execution Mode
control (C). We'll only need one
extra page, but we'll create several -
just in case requirements change ot co 1y f— T

(D) . s i Extra Page 2

Build the Configuration

Now we'll modify the LabVIEW Yo, g
Project Vls generated by the | LIRS B
Custom Device Template Tool. | e]-N]
We'll start with AES-201 e “e”‘

| Channel Mame

Initialization.vi. Inthe ADDataFromCh

initialization VI, we’ll build-up the
default channel list. You've already
seen Add Custom Device Channel
VI.

{8
Channel
Type

|

|

|

|

|

|

|

0Outaut 'l |
Linits |
|

|

|

|

|

|

|

Parent Ref out

errar in error out

Custom Device Developer's Guide © 2010 National Instruments 44 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/

Add a Boolean property to each [oem] _ 20,

channel using Set Item Property. | e =

The property will indicate the state of Ioaviceltemﬂn ! r
the filter on the channel. | —

Channel Mame

ADDataFromCh

Parent Ref out

Channel
[

Filtern]

IE il = = i | - — o - ol r o2 5 |

| error in error out

L e =

It's good practice to use Global ji‘?Ei!l__

2010
. — T TR B
Variables or enum type definitions : e |
for any constants that will be reused |,_. ,..cen ! r :
throughout the custom device. | =l Cramme e |
. . |
Replace the string constant with a | |
global variable that has the same | pa,gnmefuut:
Channel iterEn
default value as the constant. Add I W) Sty |
. error in error out
the global variable to the custom | iz - = AR 8] :
device Ivlib in the LabVIEW Project. | e+ |
| F |
R |
We want to override the default <Page>
channel page so we can add a <Name>
<eng>ADDataFromCh</eng>
control to the page that allows the <loc>ADDataFromCh</loc>
operator to set the filter. We created </Name>
an extra page called <GUID>8AB4F65B-85C9-6BD6-B869-680C60278524</GUID>

<Glyph>

. i <Type>To Application Data Dir</Type>
purpose. Look in the custom device <Path>System Explorer\Glyphs\default fpga
XML and find the GUID associated channel.png</Path>

with the extra page. While you're at </Glyph>

it, change the glyph for the custom ~ <ttem2Launch>

ADDataFromCh.vi for this

<Type>To Common Doc Dir</Type>
channelpaget0<jefaujjz fpga <Path>Custom Devices\AES-201\AES-201
channel. Configuration.llb\ADDataFromCh.vi</Path>
</Item2Launch>
</Page>
<Page>

Operators are used to having channels associated with that glyph. Likewise, change the glyph of
the main page to dag device.

Custom Device Developer's Guide © 2010 National Instruments 45 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_property_vi/
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/global_variable/
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/global_variable/
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/enum_constant/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/creating_type_defs/

Add the GUID to the global variable.
Wire the global into the GUID
terminal of Add Custom Device
Channel. This associates the
channel with the VI.

Now when the operator clicks on
ADDataFromCh<1..8> inthe
configuration tree,
ADDataFromCh.vi runs as a sub
panel in System Explorer instead of
the default channel page.

|GE- 1

| [®[Ma Error 't[

| EHK]
|Davice Ttem Ref in
=

Channel Mame

ADDataFromCh

error in

St b ¥

Parent Ref out

error out

W

L e

From here-on, we’ll set properties when we create the item rather than using the Set Item
Property VI to set them on the item reference.

Now that we’ve linked the channels
to the extra page, we’ll make edits to

the extra page, ADDataFromCh.vi. |

In the Initialization frame, we’ll add
code to display the channel
information.

Operators are used to seeing
channel data when they click on a
channel, so we want to preserve that
experience. If the device is a
channel, we’ll send the channel data
to an indicator on the front panel.

It's good practice to use the Boolean
outputs from functions in the API to
make sure that you’re operating on a
valid reference.

Initialization code

10000000000 o0o000ooooooan

F A Description

b+ [Mame H kA larne |

jOooooooooooooooooood

Initialization code

10 0000000000000 000000000amo

kA Descripkion

el b 1 |

Mame
Iz Zhannel

—
Ty
abi fee

OO0 0000000000000 00000000

In this case, we’ll only retrieve the channel data if we have a valid channel reference. Another
option is to specify the default property value. The default property value is returned if the

property is not found. Using the default property value does not set the property.

Custom Device Developer's Guide

© 2010 National Instruments

46 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_property_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_property_vi/

Notice how the initialization frame
reads the name and description from
the device reference.

Do the same thing for the
FilterEn property so the operator
can see the state of the channel’s
filter setting. NI VeriStand is
responsible for passing the correct
channel reference to our custom
device, and storing state data for all
the controls and indicators. The
developer is responsible for acting
on the reference and displaying the
state.

Add a Boolean control to the front
panel called Channel Filter.
Create a case in the Event Structure
for the control’s value change. If the
FilterEn property is found, set the
property according to the value of
the control. Ifthe FilterEn
property is not found, show a dialog
box with debugging information.

Initizlization code
TOooooo00000000000000000000o00000ooooon

F A Descrption

v Y Channel
=Ty

ab:

LIEEET o LR {Pﬂchannel Filker
Boolean ~

1000000000000 000000000000000000000«©070 70 L0

Z}][] "Channel Filker": Yalue Change
(D i F
SFil +
FilterEn f_;' Channel Filter [TE8-f ————LJi5 ¥

— [T —

E Boolean ~
[~

If the operator does not change this control, the property is never created. There are
several ways around this. You could initialize the property in the Initialization VI, or you
can assume a default value when you read the property.

Custom Device Developer's Guide

© 2010 National Instruments 47 of 85

Remember, this VI runs on the host
computer, so we can launch a pop-
up dialog box to assist with

debugging. WFase]

There was i
a problem —

Channel Filker -

Now we’ll build a subVI that creates
channels so we can reuse it for the
enable channels.

f
I
£ e

Add the default channel GUID to the
global variable. You can get it from —

the front panel of Add Custom == Default
Device Channel. channel GUID

Here it is for your reference:
03D3BB99-1485-13A6-

561D1F898F032919.

If the Override Default Channel? | ©=®&| _________ ___ ___________ _=u
terminal of our subVI is true, the VI |
takes a GUID from the caller. If not, &rtman

the VI uses the default channel }Mefa“'““a”“a'?
GUID.

[ke Error 't

\

|
Notice how properties are set from }
the Add Custom Device Channel VI |
|

\

|

|

|

|

Device Item Ref out

directly. You can use this subVI in
many custom device projects.

error out

— e el

Custom Device Developer's Guide © 2010 National Instruments 48 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/

@ Custom devices execute as reentrant on the execution host. This enables the operator to
run multiple independent instances of the same custom device. Consider the case if the
operator has several AES-201 cards. Be sure to enable Reentrant execution from the
subVI’s File » VI Properties » Execution category to preserve this capability. See
LabVIEW Help » Fundamentals » Managing Performance and Memory » Concepts »
Suggestions for Using Execution Systems and Priorities » Simultaneously Calling SubVIs
from Multiple Places for more information about reentrant Vis.

The final Initialization VI createstwo ®=%|
. [k Errar ‘t
SeCtlonS . The Hardware I n pUtS } Create Hardware Inputs section and (Create Hardware Enables
. . create & output channels, each with section and create 8 input
SeCtlon has elg ht Output Chan nels . ‘ a property called FilterEn, Override channels.
\
\
\

(Create a single
SMETrig input
channel.

the default channel page.
The Hardware Enables section has

Hardware Inputs

Hardware Enables SMBTria Device Ltem Ref out

eight input channels. We also
create an input channel for the }Mmmﬂn
. =T
software trigger. o Mkl S Ry L TESETRETENETED § B [SRR ey
| Custom L e
== [} - T et
R .. I B
NOW that the inltlalizatlon rOUtlne IS {g Combo Box prnperties: cUnﬁgure Range
done, we’ll turn our attention to the
. s Appearance | EditItems | pocumentation | DataBinding | Key Mavigation || Security
main page. We'll use a type | Appesrance |
definition combo box to set the [Jvalues match Ttems
range of the AES-201. Add the type Items Va'uesl [Tnsert
.. . . ESRY Orne Yolk
definition to the custom device Ivlib. +500my HalF Volt
| Mave Down |
v]
[allows undefined values at run time
’ (a4] ’ Cancel] [Help]

Custom Device Developer's Guide © 2010 National Instruments 49 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvdialog/vi_properties_dialog_box/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvdialog/execution/
http://zone.ni.com/reference/en-XX/help/371361G-01/
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC10.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC84.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC85.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/suggestions_for_exec/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/suggestions_for_exec/#Simultaneously_Calling_SubVIs_from_Multiple_Places
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/suggestions_for_exec/#Simultaneously_Calling_SubVIs_from_Multiple_Places

Modify the main p